Miguel R Lugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11617578/publications.pdf

Version: 2024-02-01

713013 758635 21 467 12 21 h-index citations g-index papers 21 21 21 424 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of Anti-Virulence Therapeutics against Mono-ADP-Ribosyltransferase Toxins. Toxins, 2021, 13, 16.	1.5	5
2	Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, <i>Paenibacillus larvae</i> . Bioscience Reports, 2020, 40, .	1.1	10
3	An In-Silico Sequence-Structure-Function Analysis of the N-Terminal Lobe in CT Group Bacterial ADP-Ribosyltransferase Toxins. Toxins, 2019, 11, 365.	1.5	6
4	Characterization of the catalytic signature of Scabin toxin, a DNA-targeting ADP-ribosyltransferase. Biochemical Journal, 2018, 475, 225-245.	1.7	13
5	Dynamics of Scabin toxin. A proposal for the binding mode of the DNA substrate. PLoS ONE, 2018, 13, e0194425.	1.1	10
6	Characterization of the toxin Plx2A, a RhoAâ€targeting ADPâ€tibosyltransferase produced by the honey bee pathogen <i>Paenibacillus larvae</i> . Environmental Microbiology, 2017, 19, 5100-5116.	1.8	20
7	Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies. Journal of Biological Chemistry, 2016, 291, 11198-11215.	1.6	44
8	Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism. Archives of Biochemistry and Biophysics, 2016, 608, 52-73.	1.4	2
9	Structural variability of C3larvin toxin. Intrinsic dynamics of the $\hat{l}\pm\hat{l}^2$ fold of the C3-like group of mono-ADP-ribosyltransferase toxins. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1-24.	2.0	6
10	The Father, Son and Cholix Toxin: The Third Member of the DT Group Mono-ADP-Ribosyltransferase Toxin Family. Toxins, 2015, 7, 2757-2772.	1.5	13
11	C3larvin Toxin, an ADP-ribosyltransferase from Paenibacillus larvae. Journal of Biological Chemistry, 2015, 290, 1639-1653.	1.6	41
12	Pocket analysis of the full-length cholix toxin. An assessment of the structure–dynamics of theapocatalytic domain. Journal of Biomolecular Structure and Dynamics, 2015, 33, 2452-2468.	2.0	8
13	A comparative structure-function analysis of active-site inhibitors of Vibrio choleraecholix toxin. Journal of Molecular Recognition, 2015, 28, 539-552.	1.1	8
14	Characterization of Vis Toxin, a Novel ADP-Ribosyltransferase from <i>Vibrio splendidus</i> Biochemistry, 2015, 54, 5920-5936.	1.2	15
15	Harmonic Analysis of the Fluorescence Response of Bimane Adducts of Colicin E1 at Helices 6, 7, and 10. Journal of Biological Chemistry, 2013, 288, 5136-5148.	1.6	12
16	The 1.8 \tilde{A} Cholix Toxin Crystal Structure in Complex with NAD+ and Evidence for a New Kinetic Model. Journal of Biological Chemistry, 2012, 287, 21176-21188.	1.6	18
17	Membrane Topology of the Colicin E1 Channel Using Genetically Encoded Fluorescence. Biochemistry, 2011, 50, 4830-4842.	1.2	12
18	Interaction of LDS-751 with the drug-binding site of P-glycoprotein: A Trp fluorescence steady-state and lifetime study. Archives of Biochemistry and Biophysics, 2009, 492, 17-28.	1.4	14

MIGUEL R LUGO

#	Article	IF	CITATION
19	New Insights into the Drug Binding, Transport and Lipid Flippase Activities of the P-Glycoprotein Multidrug Transporter. Journal of Bioenergetics and Biomembranes, 2005, 37, 481-487.	1.0	33
20	Interaction of LDS-751 and Rhodamine 123 with P-Glycoprotein: Evidence for Simultaneous Binding of Both Drugsâ€. Biochemistry, 2005, 44, 14020-14029.	1.2	77
21	Interaction of LDS-751 with P-Glycoprotein and Mapping of the Location of the R Drug Binding Site. Biochemistry, 2005, 44, 643-655.	1.2	100