
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11616735/publications.pdf Version: 2024-02-01

DOW P HUDST

#	Article	IF	CITATIONS
1	The NPXXY Motif Regulates Î ² -Arrestin Recruitment by the CB1 Cannabinoid Receptor. Cannabis and Cannabinoid Research, 2023, 8, 731-748.	2.9	4
2	Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.	6.4	18
3	TRPV1 Activation by Anandamide via a Unique Lipid Pathway. Journal of Chemical Information and Modeling, 2021, 61, 5742-5746.	5.4	7
4	Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2020, 63, 542-568.	6.4	40
5	A Closer Look at Anandamide Interaction With TRPV1. Frontiers in Molecular Biosciences, 2020, 7, 144.	3.5	29
6	Therapeutic Exploitation of GPR18: Beyond the Cannabinoids?. Journal of Medicinal Chemistry, 2020, 63, 14216-14227.	6.4	31
7	GPR6 Structural Insights: Homology Model Construction and Docking Studies. Molecules, 2020, 25, 725.	3.8	6
8	The Nucleotide-Free State of the Cannabinoid CB2/Gi Complex. Cell, 2020, 180, 603-604.	28.9	5
9	Identification of CB1 Receptor Allosteric Sites Using Force-Biased MMC Simulated Annealing and Validation by Structure–Activity Relationship Studies. ACS Medicinal Chemistry Letters, 2019, 10, 1216-1221.	2.8	25
10	Structural Insights from Recent CB1 X-Ray Crystal Structures. , 2019, , .		1
11	Towards A Molecular Understanding of The Cannabinoid Related Orphan Receptor GPR18: A Focus on Its Constitutive Activity. International Journal of Molecular Sciences, 2019, 20, 2300.	4.1	9
12	Synthesis, Pharmacological Evaluation, and Docking Studies of Novel Pyridazinoneâ€Based Cannabinoid Receptor Typeâ€2 Ligands. ChemMedChem, 2018, 13, 1102-1114.	3.2	1
13	Molecular Targets of the Phytocannabinoids: A Complex Picture. Progress in the Chemistry of Organic Natural Products, 2017, 103, 103-131.	1.1	292
14	Design, synthesis and biological evaluation of GPR55 agonists. Bioorganic and Medicinal Chemistry, 2017, 25, 4355-4367.	3.0	10
15	Identification of Crucial Amino Acid Residues Involved in Agonist Signaling at the GPR55 Receptor. Biochemistry, 2017, 56, 473-486.	2.5	21
16	Structure-activity relationships of benzothiazole GPR35 antagonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 612-615.	2.2	4
17	A dual substrate kinetic model for cytochrome P450BM3-F87G catalysis: simultaneous binding of long chain aldehydes and 4-fluorophenol. Biotechnology Letters, 2017, 39, 311-321.	2.2	5
18	Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Methods in Enzymology, 2017, 593, 449-490.	1.0	11

#	Article	IF	CITATIONS
19	Methods for the Development of In Silico GPCR Models. Methods in Enzymology, 2017, 593, 405-448.	1.0	17
20	Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chemical Neuroscience, 2016, 7, 776-798.	3.5	30
21	Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis. Journal of Medicinal Chemistry, 2016, 59, 6753-6771.	6.4	34
22	One for the Price of Two…Are Bivalent Ligands Targeting Cannabinoid Receptor Dimers Capable of Simultaneously Binding to both Receptors?. Trends in Pharmacological Sciences, 2016, 37, 353-363.	8.7	23
23	Design, synthesis, and analysis of antagonists of GPR55: Piperidine-substituted 1,3,4-oxadiazol-2-ones. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1827-1830.	2.2	6
24	(4-(Bis(4-Fluorophenyl)Methyl)Piperazin-1-yl)(Cyclohexyl)Methanone Hydrochloride (LDK1229): A New Cannabinoid CB1Receptor Inverse Agonist from the Class of Benzhydryl Piperazine Analogs. Molecular Pharmacology, 2015, 87, 197-206.	2.3	3
25	Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB 2 receptor antagonists. European Journal of Medicinal Chemistry, 2015, 101, 651-667.	5.5	14
26	lsolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues. Bioorganic and Medicinal Chemistry, 2015, 23, 6993-6999.	3.0	21
27	Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior. Journal of Neuroscience, 2015, 35, 13975-13988.	3.6	50
28	Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction. Journal of Biological Chemistry, 2014, 289, 20259-20272.	3.4	32
29	Global fold of human cannabinoid type 2 receptor probed by solidâ€state ¹³ Câ€; ¹⁵ Nâ€MAS NMR and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 452-465.	2.6	19
30	Pregnenolone Can Protect the Brain from Cannabis Intoxication. Science, 2014, 343, 94-98.	12.6	247
31	Crucial Positively Charged Residues for Ligand Activation of the GPR35 Receptor. Journal of Biological Chemistry, 2014, 289, 3625-3638.	3.4	20
32	CB2-Selective Cannabinoid Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Modeling Investigation of 1,8-Naphthyridin-2(1 <i>H</i>)-one-3-carboxamides. Journal of Medicinal Chemistry, 2014, 57, 8777-8791.	6.4	46
33	The Importance of Hydrogen Bonding and Aromatic Stacking to the Affinity and Efficacy of Cannabinoid Receptor CB ₂ Antagonist, 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]- <i>N</i> /i>.2 <i>S</i> ,4 <i>R</i>)-1,3,3-trimet (SR144528), Journal of Medicinal Chemistry, 2013, 56, 6593-6612.	hylbicyclo[2.2 <mark>19</mark>]hept-2
34	Identification of the GPR55 Antagonist Binding Site Using a Novel Set of High-Potency GPR55 Selective Ligands. Biochemistry, 2013, 52, 9456-9469.	2.5	59
35	Endogenous lipid activated G protein-coupled receptors: Emerging structural features from crystallography and molecular dynamics simulations. Chemistry and Physics of Lipids, 2013, 169, 46-56.	3.2	36
36	Chromenopyrazoles: Nonâ€psychoactive and Selective CB ₁ Cannabinoid Agonists with Peripheral Antinociceptive Properties. ChemMedChem, 2012, 7, 452-463.	3.2	27

#	Article	IF	CITATIONS
37	Inside Back Cover: Chromenopyrazoles: Non-psychoactive and Selective CB1Cannabinoid Agonists with Peripheral Antinociceptive Properties (ChemMedChem 3/2012). ChemMedChem, 2012, 7, 536-536.	3.2	0
38	Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling. BMC Cell Biology, 2012, 13, 6.	3.0	92
39	Identification of the GPR55 Agonist Binding Site Using a Novel Set of High-Potency GPR55 Selective Ligands. Biochemistry, 2011, 50, 5633-5647.	2.5	62
40	Synthesis and pharmacology of 1-methoxy analogs of CP-47,497. Bioorganic and Medicinal Chemistry, 2010, 18, 5475-5482.	3.0	4
41	A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor. Journal of Biological Chemistry, 2010, 285, 17954-17964.	3.4	187
42	Analogs of JHU75528, a PET ligand for imaging of cerebral cannabinoid receptors (CB1): Development of ligands with optimized lipophilicity and binding affinity. European Journal of Medicinal Chemistry, 2009, 44, 593-608.	5.5	16
43	Models of Cannabinoid Inverse Agonism, Neutral Antagonism, and Agonism: Tools for Rational Drug Design. , 2009, , 235-278.		0
44	Conformational memories with variable bond angles. Journal of Computational Chemistry, 2008, 29, 741-752.	3.3	14
45	Residues Accessible in the Binding-Site Crevice of Transmembrane Helix 6 of the CB2 Cannabinoid Receptor. Biochemistry, 2008, 47, 13811-13821.	2.5	24
46	Mutation Studies of Ser7.39 and Ser2.60 in the Human CB1Cannabinoid Receptor: Evidence for a Serine-Induced Bend in CB1Transmembrane Helix 7. Molecular Pharmacology, 2007, 71, 1512-1524.	2.3	79
47	Helix 8 Leu in the CB1 Cannabinoid Receptor Contributes to Selective Signal Transduction Mechanisms. Journal of Biological Chemistry, 2007, 282, 25100-25113.	3.4	54
48	Structure–activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorganic and Medicinal Chemistry, 2005, 13, 89-112.	3.0	240
49	Cysteine 2.59(89) in the Second Transmembrane Domain of Human CB2 Receptor Is Accessible within the Ligand Binding Crevice: Evidence for Possible CB2 Deviation from a Rhodopsin Template. Molecular Pharmacology, 2005, 68, 69-83.	2.3	43
50	(-)-7′-Isothiocyanato-11-hydroxy-1′,1′-dimethylheptylhexahydrocannabinol (AM841), a High-Affinity Electrophilic Ligand, Interacts Covalently with a Cysteine in Helix Six and Activates the CB1 Cannabinoid Receptor. Molecular Pharmacology, 2005, 68, 1623-1635.	2.3	86
51	Structural Mimicry in Class A G Protein-coupled Receptor Rotamer Toggle Switches. Journal of Biological Chemistry, 2004, 279, 48024-48037.	3.4	142
52	3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB1 cannabinoid receptor. Bioorganic and Medicinal Chemistry, 2003, 11, 539-549.	3.0	139
53	An Aromatic Microdomain at the Cannabinoid CB1 Receptor Constitutes an Agonist/Inverse Agonist Binding Region. Journal of Medicinal Chemistry, 2003, 46, 5139-5152.	6.4	189
54	N-(Piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) Interaction with LYS 3.28(192) Is Crucial for Its Inverse Agonism at the Cannabinoid CB1 Receptor. Molecular Pharmacology, 2002, 62, 1274-1287.	2.3	170

#	Article	IF	CITATIONS
55	Conformational Memories and the Endocannabinoid Binding Site at the Cannabinoid CB1 Receptor. Journal of Medicinal Chemistry, 2002, 45, 3649-3659.	6.4	67
56	A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition. Biochemical Pharmacology, 2002, 63, 2121-2136.	4.4	63
57	Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation. International Journal of Quantum Chemistry, 2002, 88, 76-86.	2.0	44
58	Exploration of Biologically Relevant Conformations of Anandamide, 2-Arachidonylglycerol, and Their Analogues Using Conformational Memories. Journal of Medicinal Chemistry, 1998, 41, 4861-4872.	6.4	71
59	The Bioactive Conformation of Aminoalkylindoles at the Cannabinoid CB1 and CB2 Receptors:Â Insights Gained from (E)- and (Z)-Naphthylidene Indenes. Journal of Medicinal Chemistry, 1998, 41, 5177-5187.	6.4	60