Gary A Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161658/publications.pdf Version: 2024-02-01

		26567	29081
111	15,157	56	104
papers	citations	h-index	g-index
112	112	112	14332
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. , 2022, , 153-160.e4.		0
2	Expanding the horizon of research into theÂpathogenesis of the white matter diseases: Proceedings of the 2021 Annual Workshop of the Albert Research Institute for White Matter and Cognition. GeroScience, 2022, 44, 25-37.	2.1	1
3	Shared Inflammatory Pathology of Stroke and COVID-19. International Journal of Molecular Sciences, 2022, 23, 5150.	1.8	6
4	A double-dichotomy clustering of dual pathology dementia patients. Cerebral Circulation - Cognition and Behavior, 2021, 2, 100011.	0.4	6
5	Microglial activation and blood–brain barrier permeability in cerebral small vessel disease. Brain, 2021, 144, 1361-1371.	3.7	62
6	Inflammatory Biomarkers Aid in Diagnosis of Dementia. Frontiers in Aging Neuroscience, 2021, 13, 717344.	1.7	17
7	In search of multimodal brain alterations in Alzheimer's and Binswanger's disease. NeuroImage: Clinical, 2020, 26, 101937.	1.4	13
8	Discriminating VCID subgroups: A diffusion MRI multi-model fusion approach. Journal of Neuroscience Methods, 2020, 335, 108598.	1.3	6
9	Hypoxia promotes tau hyperphosphorylation with associated neuropathology in vascular dysfunction. Neurobiology of Disease, 2019, 126, 124-136.	2.1	53
10	A Multimodal Approach to Stratification of Patients with Dementia: Selection of Mixed Dementia Patients Prior to Autopsy. Brain Sciences, 2019, 9, 187.	1.1	7
11	Neuroinflammation: friend and foe for ischemic stroke. Journal of Neuroinflammation, 2019, 16, 142.	3.1	796
12	Understanding aging effects on brain ischemia. Neurobiology of Disease, 2019, 126, 3-4.	2.1	3
13	Altered static and dynamic functional network connectivity in Alzheimer's disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Human Brain Mapping, 2019, 40, 3203-3221.	1.9	107
14	Biomarkers identify the Binswanger type of vascular cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1602-1612.	2.4	19
15	Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury. Neurobiology of Disease, 2018, 114, 95-110.	2.1	67
16	Blood-ocular barrier leakage. Neurology, 2018, 90, 491-492.	1.5	1
17	Binswanger's disease: biomarkers in the inflammatory form of vascular cognitive impairment and dementia. Journal of Neurochemistry, 2018, 144, 634-643.	2.1	32
18	MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies. Neuropharmacology, 2018, 134, 259-271.	2.0	108

#	Article	IF	CITATIONS
19	MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS ONE, 2018, 13, e0208357.	1.1	10
20	Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clinical Science, 2017, 131, 425-437.	1.8	134
21	Translational models for vascular cognitive impairment: a review including larger species. BMC Medicine, 2017, 15, 16.	2.3	71
22	Transient increase of fractional anisotropy in reversible vasogenic edema. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1731-1743.	2.4	27
23	Rodent Models of Vascular Cognitive Impairment. Translational Stroke Research, 2016, 7, 407-414.	2.3	76
24	Neuroimaging in vascular cognitive impairment: a state-of-the-art review. BMC Medicine, 2016, 14, 174.	2.3	59
25	Matrix Metalloproteinase-Mediated Neuroinflammation in Vascular Cognitive Impairment of the Binswanger Type. Cellular and Molecular Neurobiology, 2016, 36, 195-202.	1.7	24
26	Vascular cognitive impairment: Biomarkers in diagnosis and molecular targets in therapy. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 4-5.	2.4	14
27	Consensus statement for diagnosis of subcortical small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 6-25.	2.4	173
28	Hypoxia-Induced Neuroinflammatory White-Matter Injury Reduced by Minocycline in SHR/SP. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1145-1153.	2.4	87
29	Long-Term Blood–Brain Barrier Permeability Changes in Binswanger Disease. Stroke, 2015, 46, 2413-2418.	1.0	107
30	Validation of biomarkers in subcortical ischaemic vascular disease of the Binswanger type: approach to targeted treatment trials. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1324-1330.	0.9	31
31	Matrix metalloproteinases as therapeutic targets for stroke. Brain Research, 2015, 1623, 30-38.	1.1	185
32	Multimodal Markers of Inflammation in the Subcortical Ischemic Vascular Disease Type of Vascular Cognitive Impairment. Stroke, 2014, 45, 1531-1538.	1.0	80
33	Binswanger's disease: toward a diagnosis agreement and therapeutic approach. Expert Review of Neurotherapeutics, 2014, 14, 1203-1213.	1.4	25
34	Tissue Oxygen is Reduced in White Matter of Spontaneously Hypertensive-Stroke Prone Rats: A Longitudinal Study with Electron Paramagnetic Resonance. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 890-896.	2.4	36
35	Neuroimaging of White Matter Injury: A Multimodal Approach to Vascular Disease. , 2014, , 67-90.		0
36	Fluorometric immunocapture assay for the specific measurement of matrix metalloproteinase-9 activity in biological samples: application to brain and plasma from rats with ischemic stroke. Molecular Brain, 2013, 6, 14.	1.3	28

#	Article	IF	CITATIONS
37	Quantification of blood-to-brain transfer rate in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2013, 2, 124-132.	0.9	11
38	1H-MR spectroscopy metabolite levels correlate with executive function in vascular cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 715-721.	0.9	39
39	Early Inhibition of MMP Activity in Ischemic Rat Brain Promotes Expression of Tight Junction Proteins and Angiogenesis During Recovery. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1104-1114.	2.4	122
40	Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Experimental Neurology, 2013, 240, 9-16.	2.0	40
41	Dynamic Contrast-Enhanced MRI Evaluation of Cerebral Cavernous Malformations. Translational Stroke Research, 2013, 4, 500-506.	2.3	28
42	Myelin Loss Associated With Neuroinflammation in Hypertensive Rats. Stroke, 2012, 43, 1115-1122.	1.0	117
43	Neurological Diseases in Relation to the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1139-1151.	2.4	347
44	Brain Edema and Disorders of Cerebrospinal Fluid Circulation. , 2012, , 1377-1395.		3
45	MMP-Mediated Disruption of Claudin-5 in the Blood–Brain Barrier of Rat Brain After Cerebral Ischemia. Methods in Molecular Biology, 2011, 762, 333-345.	0.4	112
46	Blood–Brain Barrier Breakdown in Acute and Chronic Cerebrovascular Disease. Stroke, 2011, 42, 3323-3328.	1.0	620
47	Modeling of cerebellar hemorrhage. Experimental Neurology, 2011, 228, 157-159.	2.0	5
48	Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice. Journal of Neuroinflammation, 2011, 8, 108.	3.1	56
49	Quantitative measurement of bloodâ€brain barrier permeability in human using dynamic contrastâ€enhanced MRI with fast <i>T</i> ₁ mapping. Magnetic Resonance in Medicine, 2011, 65, 1036-1042.	1.9	86
50	Matrix Metalloproteinases Are Associated With Increased Blood–Brain Barrier Opening in Vascular Cognitive Impairment. Stroke, 2011, 42, 1345-1350.	1.0	136
51	Blood–Brain Barrier Permeability Abnormalities in Vascular Cognitive Impairment. Stroke, 2011, 42, 2158-2163.	1.0	209
52	Multiple Roles of Metalloproteinases in Neurological Disorders. Progress in Molecular Biology and Translational Science, 2011, 99, 241-263.	0.9	45
53	Brain Edema in Neurological Diseases. Advances in Neurobiology, 2011, , 125-168.	1.3	2
54	Divergent role for MMPâ€⊋ in myelin breakdown and oligodendrocyte death following transient global ischemia. Journal of Neuroscience Research, 2010, 88, 764-773.	1.3	51

#	Article	IF	CITATIONS
55	Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. Journal of Neurochemistry, 2010, 112, 134-149.	2.1	118
56	Spontaneous Intracerebral Hemorrhage during Acute and Chronic Hypertension in Mice. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 56-69.	2.4	93
57	Cyclooxygenase-1 and -2 Differentially Modulate Lipopolysaccharide-Induced Blood–Brain Barrier Disruption through Matrix Metalloproteinase Activity. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 370-380.	2.4	61
58	Metzincin Proteases and Their Inhibitors: Foes or Friends in Nervous System Physiology?. Journal of Neuroscience, 2010, 30, 15337-15357.	1.7	204
59	Inflammation and White Matter Damage in Vascular Cognitive Impairment. Stroke, 2009, 40, S20-3.	1.0	121
60	The Neurovascular Unit in Health and Disease. Stroke, 2009, 40, S2-3.	1.0	118
61	Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurology, The, 2009, 8, 205-216.	4.9	515
62	Increased Apparent Diffusion Coefficients on MRI Linked with Matrix Metalloproteinases and Edema in White Matter after Bilateral Carotid Artery Occlusion in Rats. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 308-316.	2.4	57
63	TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Experimental Neurology, 2009, 216, 122-131.	2.0	58
64	Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 2009, 158, 983-994.	1.1	468
65	ELEVATION OF MATRIX METALLOPROTEINASES 3 AND 9 IN CEREBROSPINAL FLUID AND BLOOD IN PATIENTS WITH SEVERE TRAUMATIC BRAIN INJURY. Neurosurgery, 2009, 65, 702-708.	0.6	122
66	Spatiotemporal Correlations between Blood-Brain Barrier Permeability and Apparent Diffusion Coefficient in a Rat Model of Ischemic Stroke. PLoS ONE, 2009, 4, e6597.	1.1	34
67	Early Beneficial Effect of Matrix Metalloproteinase Inhibition on Blood—Brain Barrier Permeability as Measured by Magnetic Resonance Imaging Countered by Impaired Long-Term Recovery after Stroke in Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 431-438.	2.4	105
68	Matrix Metalloproteinase Inhibition Facilitates Cell Death in Intracerebral Hemorrhage in Mouse. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 752-763.	2.4	60
69	Chapter 15 Experimental models in intracerebral hemorrhage. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 92, 307-324.	1.0	3
70	Cyclooxygenase Inhibition Limits Blood-Brain Barrier Disruption following Intracerebral Injection of Tumor Necrosis Factor-α in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 488-498.	1.3	159
71	Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurgical Focus, 2007, 22, 1-9.	1.0	287
72	Quantitative evaluation of the effect of propylene glycol on BBB permeability. Journal of Magnetic Resonance Imaging, 2007, 25, 39-47.	1.9	20

#	Article	IF	CITATIONS
73	Differential expression of tissue inhibitor of metalloproteinases-3 in cultured astrocytes and neurons regulates the activation of matrix metalloproteinase-2. Journal of Neuroscience Research, 2007, 85, 829-836.	1.3	20
74	Matrix Metalloproteinase-Mediated Disruption of Tight Junction Proteins in Cerebral Vessels is Reversed by Synthetic Matrix Metalloproteinase Inhibitor in Focal Ischemia in Rat. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 697-709.	2.4	913
75	Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood–brain barrier opening in rodents: Differences in response based on strains and solvents. Brain Research, 2007, 1133, 186-192.	1.1	59
76	Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiology of Disease, 2006, 23, 87-96.	2.1	210
77	AUF-1 mediates inhibition by nitric oxide of lipopolysaccharide-induced matrix metalloproteinase-9 expression in cultured astrocytes. Journal of Neuroscience Research, 2006, 84, 360-369.	1.3	20
78	National Institute of Neurological Disorders and Stroke–Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards. Stroke, 2006, 37, 2220-2241.	1.0	1,445
79	Matrix Metalloproteinases and Neuroinflammation in Multiple Sclerosis. , 2005, , 351-371.		Ο
80	Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radical Biology and Medicine, 2005, 39, 71-80.	1.3	224
81	Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 2005, 50, 329-339.	2.5	401
82	Matrix metalloproteinases biomarkers in multiple sclerosis. Lancet, The, 2005, 365, 1291-1293.	6.3	35
83	Measurement of Gelatinase B (MMP-9) in the Cerebrospinal Fluid of Patients With Vascular Dementia and Alzheimer Disease. Stroke, 2004, 35, e159-62.	1.0	124
84	Cortical spreading depression activates and upregulates MMP-9. Journal of Clinical Investigation, 2004, 113, 1447-1455.	3.9	389
85	Cortical spreading depression activates and upregulates MMP-9. Journal of Clinical Investigation, 2004, 113, 1447-1455.	3.9	261
86	Closure of the Blood-Brain Barrier by Matrix Metalloproteinase Inhibition Reduces rtPA-Mediated Mortality in Cerebral Ischemia With Delayed Reperfusion. Stroke, 2003, 34, 2025-2030.	1.0	263
87	Tissue Inhibitor of Metalloproteinase-3 is Associated with Neuronal Death in Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1303-1310.	2.4	44
88	Matrix Metalloproteinases and Neuroinflammation in Multiple Sclerosis. Neuroscientist, 2002, 8, 586-595.	2.6	106
89	The role of matrix metalloproteinases and urokinase in blood–brain barrier damage with thrombolysis. , 2002, , 161-171.		0
90	Stromelysin-1 and gelatinase A are upregulated before TNF-α in LPS-stimulated neuroinflammation. Brain Research, 2002, 933, 42-49.	1.1	62

#	Article	IF	CITATIONS
91	Matrix metalloproteinases in neuroinflammation. Glia, 2002, 39, 279-291.	2.5	777
92	Tissue Inhibitor of Metalloproteinase-3 Is Associated With Neuronal Death in Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1303-1310.	2.4	19
93	White Matter Damage Is Associated With Matrix Metalloproteinases in Vascular Dementia. Stroke, 2001, 32, 1162-1168.	1.0	185
94	Matrix metalloproteinases in multiple sclerosis: Is it time for a treatment trial?. Annals of Neurology, 2001, 50, 431-433.	2.8	18
95	Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Research, 2001, 893, 104-112.	1.1	364
96	Extracellular matrix-degrading metalloproteinases and neuroinflammation in stroke. , 2001, , 287-297.		1
97	Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Molecular Neurobiology, 1999, 19, 267-284.	1.9	206
98	Matrix Metalloproteinases in Cerebrovascular Disease. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 1163-1172.	2.4	323
99	Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1203-R1211.	0.9	113
100	¹ H-MRS Differentiates White Matter Hyperintensities in Subcortical Arteriosclerotic Encephalopathy From Those in Normal Elderly. Stroke, 1997, 28, 1940-1943.	1.0	56
101	Proteolytic Cascade Enzymes Increase in Focal Cerebral Ischemia in Rat. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 360-366.	2.4	389
102	Comparison of Magnetic Resonance Imaging and Histology in Collagenaseâ€induced Hemorrhage in the Rat. Journal of Neuroimaging, 1995, 5, 23-33.	1.0	33
103	Tumor necrosis factor-α-induced gelatinase B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Research, 1995, 703, 151-155.	1.1	250
104	Matrix Metalloproteinases in Brain Injury. Journal of Neurotrauma, 1995, 12, 833-842.	1.7	207
105	Atrial Natriuretic Peptide Blocks Hemorrhagic Brain Edema After 4-Hour Delay in Rats. Stroke, 1995, 26, 874-877.	1.0	29
106	Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat. Neuroscience Letters, 1993, 160, 117-119.	1.0	103
107	TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Research, 1992, 576, 203-207.	1.1	275
108	13C Nuclear Magnetic Resonance Evidence for ?-Aminobutyric Acid Formation via Pyruvate Carboxylase in Rat Brain: A Metabolic Basis for Compartmentation0. Journal of Neurochemistry, 1989, 53, 1285-1292.	2.1	48

#	Article	IF	CITATIONS
109	Spontaneous Posterior Fossa Subdural Hematoma as a Complication of Anticoagulation. Neurosurgery, 1984, 15, 241-242.	0.6	23
110	Pathophysiology of periventricular tissue changes with raised CSF pressure in cats. Journal of Neurosurgery, 1983, 59, 606-611.	0.9	46
111	Metalloproteinases and neurodegenerative diseases: pathophysiological and therapeutic perspectives. Metalloproteinases in Medicine, 0, , 39.	1.0	11