
Vishal S Vaidya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11614204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating neurofilament light chain as a promising biomarker of AAV-induced dorsal root ganglia toxicity in nonclinical toxicology species. Molecular Therapy - Methods and Clinical Development, 2022, 25, 264-277.	1.8	16
2	A Biomarker-Centric Approach to Drug Discovery and Development: Lessons Learned from the Coronavirus Disease 2019 Pandemic. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 12-20.	1.3	5
3	Therapeutic silencing of SMOC2 prevents kidney function loss in mouse model of chronic kidney disease. IScience, 2021, 24, 103193.	1.9	6
4	Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney International, 2021, 100, 672-683.	2.6	21
5	MicroRNAs 1915–3p, 2861, and 4532 Are Associated with Long-Term Renal Function Decline in Type 1 Diabetes. Clinical Chemistry, 2019, 65, 1458-1459.	1.5	3
6	Multi omics analysis of fibrotic kidneys in two mouse models. Scientific Data, 2019, 6, 92.	2.4	26
7	Introduction: Kidney Safety Science. Seminars in Nephrology, 2019, 39, 117-119.	0.6	0
8	A Systems Toxicology Approach for the Prediction of Kidney Toxicity and Its Mechanisms In Vitro. Toxicological Sciences, 2019, 169, 54-69.	1.4	16
9	Industry Perspective on Biomarker Development and Qualification. Clinical Pharmacology and Therapeutics, 2018, 103, 27-31.	2.3	12
10	A High-Throughput Screen Identifies DYRK1A Inhibitor ID-8 that Stimulates Human Kidney Tubular Epithelial Cell Proliferation. Journal of the American Society of Nephrology: JASN, 2018, 29, 2820-2833.	3.0	6
11	MicroRNAs in injury and repair. Archives of Toxicology, 2017, 91, 2781-2797.	1.9	28
12	Targeting Phospholipase D4 Attenuates Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 3579-3589.	3.0	20
13	Identification, Confirmation, and Replication of Novel Urinary MicroRNA Biomarkers in Lupus Nephritis and Diabetic Nephropathy. Clinical Chemistry, 2017, 63, 1515-1526.	1.5	76
14	Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight, 2017, 2, .	2.3	48
15	Detection of Drug-Induced Acute Kidney Injury in Humans Using Urinary KIM-1, miR-21, -200c, and -423. Toxicological Sciences, 2016, 152, 205-213.	1.4	58
16	RNA-binding Protein Musashi Homologue 1 Regulates Kidney Fibrosis by Translational Inhibition of p21 and Numb mRNA. Journal of Biological Chemistry, 2016, 291, 14085-14094.	1.6	23
17	MicroRNAs and drug-induced kidney injury. , 2016, 163, 48-57.		55
18	A Highâ€Throughput Screening Assay to Identify Kidney Toxic Compounds. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 69, 9.10.1-9.10.26.	1.1	14

#	Article	IF	CITATIONS
19	Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. BioMetals, 2016, 29, 131-146.	1.8	29
20	Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicology and Applied Pharmacology, 2016, 312, 42-52.	1.3	48
21	A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro. Journal of the American Society of Nephrology: JASN, 2016, 27, 1015-1028.	3.0	94
22	RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2016, 27, 1702-1713.	3.0	53
23	Nanoparticle Detection of Urinary Markers for Point-of-Care Diagnosis of Kidney Injury. PLoS ONE, 2015, 10, e0133417.	1.1	29
24	Evidence of Uncoupling between Renal Dysfunction and Injury in Cardiorenal Syndrome: Insights from the BIONICS Study. PLoS ONE, 2014, 9, e112313.	1.1	32
25	A Bioinformatics Approach Identifies Signal Transducer and Activator of Transcription-3 and Checkpoint Kinase 1 as Upstream Regulators of Kidney Injury Molecule-1 after Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 105-118.	3.0	57
26	Urinary biomarkers track the progression of nephropathy in hypertensive and obese rats. Biomarkers in Medicine, 2014, 8, 85-94.	0.6	27
27	Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. American Journal of Physiology - Renal Physiology, 2014, 307, F471-F484.	1.3	45
28	Impaired renal function and development in Belgrade rats. American Journal of Physiology - Renal Physiology, 2014, 306, F333-F343.	1.3	22
29	Noninvasive Micromarkers. Clinical Chemistry, 2014, 60, 1158-1173.	1.5	36
30	MicroRNA-155 Deficient Mice Experience Heightened Kidney Toxicity When Dosed with Cisplatin. Toxicological Sciences, 2014, 141, 484-492.	1.4	38
31	The current status of biomarkers for predicting toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 1391-1408.	1.5	75
32	Human miRNome Profiling Identifies MicroRNAs Differentially Present in the Urine after Kidney Injury. Clinical Chemistry, 2013, 59, 1742-1752.	1.5	107
33	Qualification of Urinary Biomarkers for Kidney Toxicity. , 2013, , 129-137.		Ο
34	Impaired renal function in Belgrade rats. FASEB Journal, 2013, 27, 705.4.	0.2	0
35	Fibrinogen Excretion in the Urine and Immunoreactivity in the Kidney Serves as a Translational Biomarker for Acute Kidney Injury. American Journal of Pathology, 2012, 181, 818-828.	1.9	44
36	Expression, Circulation, and Excretion Profile of MicroRNA-21, -155, and -18a Following Acute Kidney Injury. Toxicological Sciences, 2012, 129, 256-267.	1.4	173

#	Article	IF	CITATIONS
37	Heterozygosity for Fibrinogen Results in Efficient Resolution of Kidney Ischemia Reperfusion Injury. PLoS ONE, 2012, 7, e45628.	1.1	19
38	Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney International, 2011, 79, 1119-1130.	2.6	232
39	Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney International, 2011, 79, 464-470.	2.6	202
40	Gene Expression Analysis Reveals the Cell Cycle and Kinetochore Genes Participating in Ischemia Reperfusion Injury and Early Development in Kidney. PLoS ONE, 2011, 6, e25679.	1.1	11
41	Fibrinogen β–derived Bβ15-42 peptide protects against kidney ischemia/ reperfusion injury. Blood, 2011, 118, 1934-1942.	0.6	53
42	Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 606-618.	6.6	88
43	Next-generation biomarkers for detecting kidney toxicity. Nature Biotechnology, 2010, 28, 436-440.	9.4	454
44	Performance of Novel Kidney Biomarkers in Preclinical Toxicity Studies. Toxicological Sciences, 2010, 116, 8-22.	1.4	101
45	Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart, 2010, 96, 1297-1302.	1.2	179
46	TIM2 Gene Deletion Results in Susceptibility to Cisplatin-Induced Kidney Toxicity. Toxicological Sciences, 2010, 118, 298-306.	1.4	7
47	Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney International, 2010, 77, 708-714.	2.6	144
48	Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nature Biotechnology, 2010, 28, 478-485.	9.4	552
49	Urinary Biomarkers in the Clinical Prognosis and Early Detection of Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 2154-2165.	2.2	296
50	A rapid urine test for early detection of kidney injury. Kidney International, 2009, 76, 108-114.	2.6	172
51	Reduction of proteinuria in adriamycin-induced nephropathy is associated with reduction of renal kidney injury molecule (Kim-1) over time. American Journal of Physiology - Renal Physiology, 2009, 296, F1136-F1145.	1.3	75
52	Differences in Immunolocalization of Kim-1, RPA-1, and RPA-2 in Kidneys of Gentamicin-, Cisplatin-, and Valproic Acid-Treated Rats: Potential Role of iNOS and Nitrotyrosine. Toxicologic Pathology, 2009, 37, 629-643.	0.9	37
53	Preclinical evaluation of novel urinary biomarkers of cadmium nephrotoxicity. Toxicology and Applied Pharmacology, 2009, 238, 301-305.	1.3	68
54	Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury. Toxicology and Applied Pharmacology, 2009, 238, 306-314.	1.3	108

#	Article	IF	CITATIONS
55	Effect of Renin-Angiotensin-Aldosterone System Inhibition, Dietary Sodium Restriction, and/or Diuretics on Urinary Kidney Injury Molecule 1 Excretion in Nondiabetic Proteinuric Kidney Disease: A Post Hoc Analysis of a Randomized Controlled Trial. American Journal of Kidney Diseases, 2009, 53, 16-25.	2.1	100
56	Comparative Analysis of Novel Noninvasive Renal Biomarkers and Metabonomic Changes in a Rat Model of Gentamicin Nephrotoxicity. Toxicological Sciences, 2009, 109, 336-349.	1.4	120
57	Novel technologies for the discovery and quantitation of biomarkers of toxicity. Toxicology, 2008, 245, 167-174.	2.0	48
58	Biomarkers of nephrotoxic acute kidney injury. Toxicology, 2008, 245, 182-193.	2.0	259
59	Urinary Biomarkers for Sensitive and Specific Detection of Acute Kidney Injury in Humans. Clinical and Translational Science, 2008, 1, 200-208.	1.5	286
60	Biomarkers of Acute Kidney Injury. Annual Review of Pharmacology and Toxicology, 2008, 48, 463-493.	4.2	925
61	Comparison of Kidney Injury Molecule-1 and Other Nephrotoxicity Biomarkers in Urine and Kidney Following Acute Exposure to Gentamicin, Mercury, and Chromium. Toxicological Sciences, 2008, 101, 159-170.	1.4	251
62	Immunolocalization of Kim-1, RPA-1, and RPA-2 in Kidney of Gentamicin-, Mercury-, or Chromium-Treated Rats: Relationship to Renal Distributions of iNOS and Nitrotyrosine. Toxicologic Pathology, 2008, 36, 397-409.	0.9	68
63	Modulation of aquaporin-2/vasopressin2 receptor kidney expression and tubular injury after endotoxin (lipopolysaccharide) challenge*. Critical Care Medicine, 2008, 36, 3054-3061.	0.4	30
64	Induction of kidney injury molecule-1 in homozygous Ren2 rats is attenuated by blockade of the renin-angiotensin system or p38 MAP kinase. American Journal of Physiology - Renal Physiology, 2007, 292, F313-F320.	1.3	61
65	The Utility of a Rodent Model in Detecting Pediatric Drug-Induced Nephrotoxicity. Toxicological Sciences, 2007, 99, 637-648.	1.4	41
66	Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. American Journal of Physiology - Renal Physiology, 2007, 292, F131-F139.	1.3	94
67	Urinary N-Acetyl-β-(D)-Glucosaminidase Activity and Kidney Injury Molecule-1 Level Are Associated with Adverse Outcomes in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 904-912.	3.0	467
68	High Urinary Excretion of Kidney Injury Molecule-1 Is an Independent Predictor of Graft Loss in Renal Transplant Recipients. Transplantation, 2007, 84, 1625-1630.	0.5	155
69	Tubular kidney injury molecule-1 in protein-overload nephropathy. American Journal of Physiology - Renal Physiology, 2006, 291, F456-F464.	1.3	157
70	Mechanistic biomarkers for cytotoxic acute kidney injury. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 697-713.	1.5	70
71	Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. American Journal of Physiology - Renal Physiology, 2006, 290, F517-F529.	1.3	551

#	Article	IF	CITATIONS
73	S-(1,2-Dichlorovinyl)-l-Cysteine. , 2005, , 747-749.		0
74	Streptozotocin-induced diabetic mice are resistant to lethal effects of thioacetamide hepatotoxicity. Toxicology and Applied Pharmacology, 2003, 188, 122-134.	1.3	33
75	Renal injury and repair following S-1, 2 dichlorovinyl-l-cysteine administration to miceâ~†â~†Presented in part at the 39th annual meeting of the Society of Toxicology, March 19–23, 2000 Toxicology and Applied Pharmacology, 2003, 188, 110-121.	1.3	40
76	Activation of PPARâ€Î± in streptozotocinâ€induced diabetes is essential for resistance against acetaminophen toxicity. FASEB Journal, 2003, 17, 1748-1750.	0.2	60
77	Tissue repair plays pivotal role in final outcome of liver injury following chloroform and allyl alcohol binary mixture. Food and Chemical Toxicology, 2003, 41, 1123-1132.	1.8	24
78	Role of Tissue Repair in Survival from S-(1,2-Dichlorovinyl)-L-Cysteine-Induced Acute Renal Tubular Necrosis in the Mouse. Toxicological Sciences, 2003, 74, 215-227.	1.4	32
79	Extent and Timeliness of Tissue Repair Determines the Dose-Related Hepatotoxicity of Chloroform. International Journal of Toxicology, 2003, 22, 25-33.	0.6	20
80	Molecular Mechanisms of Renal Tissue Repair in Survival from Acute Renal Tubule Necrosis: Role of ERK1/2 Pathway. Toxicologic Pathology, 2003, 31, 604-618.	0.9	29
81	Type 1 Diabetic Mice Are Protected from Acetaminophen Hepatotoxicity. Toxicological Sciences, 2003, 73, 220-234.	1.4	53
82	Upregulated Promitogenic Signaling via Cytokines and Growth Factors: Potential Mechanism of Robust Liver Tissue Repair in Calorie-Restricted Rats upon Toxic Challenge. Toxicological Sciences, 2002, 69, 448-459.	1.4	45