Babak Taheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11613559/publications.pdf

Version: 2024-02-01

18	716	687363	996975
papers	citations	h-index	g-index
19	19	19	1296
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	14.6	201
2	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	6.8	163
3	Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. Solar Energy Materials and Solar Cells, 2018, 185, 136-144.	6.2	49
4	Thiazolo[5,4- <i>d</i>]thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. Sustainable Energy and Fuels, 2020, 4, 2309-2321.	4.9	42
5	Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up. 2D Materials, 2018, 5, 045034.	4.4	34
6	Automated Scalable Spray Coating of SnO ₂ for the Fabrication of Lowâ€Temperature Perovskite Solar Cells and Modules. Energy Technology, 2020, 8, 1901284.	3.8	34
7	Closing the Cell-to-Module Efficiency Gap: A Fully Laser Scribed Perovskite Minimodule With 16% Steady-State Aperture Area Efficiency. IEEE Journal of Photovoltaics, 2018, 8, 151-155.	2.5	32
8	Laser-Scribing Optimization for Sprayed SnO ₂ -Based Perovskite Solar Modules on Flexible Plastic Substrates. ACS Applied Energy Materials, 2021, 4, 4507-4518.	5.1	31
9	Thermosetting Polyurethane Resins as Low-Cost, Easily Scalable, and Effective Oxygen and Moisture Barriers for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 54862-54875.	8.0	30
10	Modified P3HT materials as hole transport layers for flexible perovskite solar cells. Journal of Power Sources, 2021, 494, 229735.	7.8	23
11	Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm ² Active Area. ACS Applied Materials & Interfaces, 2021, 13, 29576-29584.	8.0	22
12	Attributes of High-Performance Electron Transport Layers for Perovskite Solar Cells on Flexible PET versus on Glass. ACS Applied Energy Materials, 2022, 5, 4096-4107.	5.1	22
13	Stability of dye-sensitized solar cell under reverse bias condition: Resonance Raman spectroscopy combined with spectrally resolved analysis by transmittance and efficiency mapping. Vibrational Spectroscopy, 2016, 84, 106-117.	2.2	20
14	Simple and effective deposition method for solar cell perovskite films using a sheet of paper. IScience, 2022, 25, 103712.	4.1	9
15	Diffusion Length Mapping for Dye-Sensitized Solar Cells. Energies, 2016, 9, 686.	3.1	4
16	Polyurethanes as low cost and efficient encapsulants for Perovskite Solar Cells. , 0, , .		0
17	Perovskite films and solar cells on PET substrates for space applications: stability study under neutron irradiation. , 0 , , .		O
18	Method for fabricating flexible solar cell perovskite semiconductors via a sheet of paper applicator soaked in anti-solvent., 2022,,.		O