Peter Ruggiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161315/publications.pdf

Version: 2024-02-01

102 4,667 papers citations

40 65
h-index g-index

109 109 all docs citations

109 times ranked 3974 citing authors

#	Article	IF	CITATIONS
1	Impacts of 150 Years of Shoreline and Bathymetric Change in the Coos Estuary, Oregon, USA. Estuaries and Coasts, 2022, 45, 1170-1188.	1.0	8
2	Combining process-based and data-driven approaches to forecast beach and dune change. Environmental Modelling and Software, 2022, 153, 105404.	1.9	10
3	Characterizing storm-induced coastal change hazards along the United States West Coast. Scientific Data, 2022, 9, .	2.4	3
4	Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis. Water (Switzerland), 2021, 13, 545.	1.2	9
5	The relative role of constructive and destructive processes in dune evolution on Cape Lookout National Seashore, North Carolina, USA. Earth Surface Processes and Landforms, 2021, 46, 2824-2840.	1.2	4
6	The relative influence of dune aspect ratio and beach width on dune erosion as a function of storm duration and surge level. Earth Surface Dynamics, 2021, 9, 1223-1237.	1.0	16
7	Projecting Climate Dependent Coastal Flood Risk With a Hybrid Statistical Dynamical Model. Earth's Future, 2021, 9, e2021EF002285.	2.4	14
8	The effect of sand fencing on the morphology of natural dune systems. Geomorphology, 2020, 352, 106995.	1.1	31
9	A multivariate, stochastic, climate-based wave emulator for shoreline change modelling. Ocean Modelling, 2020, 154, 101695.	1.0	17
10	Contribution of Wave Setup to Projected Coastal Sea Level Changes. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016078.	1.0	48
11	Runups of Unusual Size: Rogueness and Variability of Swash. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015186.	1.0	1
12	Elucidating Coastal Foredune Ecomorphodynamics in the U.S. Pacific Northwest via Bayesian Networks. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1919-1938.	1.0	27
13	Predicting Climateâ€Driven Coastlines With a Simple and Efficient Multiscale Model. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1596-1624.	1.0	64
14	Interdecadal Foredune Changes along the Southeast Australian Coastline: 1942–2014. Journal of Marine Science and Engineering, 2019, 7, 177.	1.2	15
15	What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels. Natural Hazards and Earth System Sciences, 2019, 19, 1415-1431.	1.5	37
16	Environmental and morphologic controls on wave-induced dune response. Geomorphology, 2019, 329, 108-128.	1.1	40
17	Species-Specific Functional Morphology of Four US Atlantic Coast Dune Grasses: Biogeographic Implications for Dune Shape and Coastal Protection. Diversity, 2019, 11, 82.	0.7	48
18	Emulation as an approach for rapid estuarine modeling. Coastal Engineering, 2019, 150, 79-93.	1.7	22

#	Article	IF	Citations
19	The influence of shelf bathymetry and beach topography on extreme total water levels: Linking large-scale changes of the wave climate to local coastal hazards. Coastal Engineering, 2019, 150, 1-17.	1.7	39
20	Timeâ€Varying Emulator for Short and Longâ€Term Analysis of Coastal Flood Hazard Potential. Journal of Geophysical Research: Oceans, 2019, 124, 9209-9234.	1.0	21
21	Exploring Marine and Aeolian Controls on Coastal Foredune Growth Using a Coupled Numerical Model. Journal of Marine Science and Engineering, 2019, 7, 13.	1.2	72
22	Simulating dune evolution on managed coastlines: Exploring management options with the Coastal Recovery from Storms Tool (CReST). Shore and Beach, 2019, , 36-43.	0.2	7
23	Mapping Out Climate Change: Assessing How Coastal Communities Adapt Using Alternative Future Scenarios. Journal of Coastal Research, 2018, 34, 1196.	0.1	23
24	New Insights on Coastal Foredune Growth: The Relative Contributions of Marine and Aeolian Processes. Geophysical Research Letters, 2018, 45, 4965-4973.	1.5	57
25	Exploring the impacts of climate and policy changes on coastal community resilience: Simulating alternative future scenarios. Environmental Modelling and Software, 2018, 109, 80-92.	1.9	22
26	A Quantitative Comparison of Low-Cost Structure from Motion (SfM) Data Collection Platforms on Beaches and Dunes. Journal of Coastal Research, 2018, 34, 1341.	0.1	16
27	Analysis and catalogue of sneaker waves in the US Pacific Northwest between 2005 and 2017. Natural Hazards, 2018, 94, 583-603.	1.6	11
28	Spatial and Temporal Variability of Dissipative Dry Beach Profiles in the Pacific Northwest, U.S.A Journal of Coastal Research, 2018, 34, 510.	0.1	8
29	A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1958-1981.	1.0	42
30	Identification of storm events and contiguous coastal sections for deterministic modeling of extreme coastal flood events in response to climate change. Coastal Engineering, 2018, 140, 316-330.	1.7	14
31	The Role of Ecomorphodynamic Feedbacks and Landscape Couplings in Influencing the Response of Barriers to Changing Climate., 2018,, 305-336.		13
32	The Role of Vegetation in Determining Dune Morphology, Exposure to Sea-Level Rise, and Storm-Induced Coastal Hazards: A U.S. Pacific Northwest Perspective., 2018,, 337-361.		22
33	Literature-based latitudinal distribution and possible range shifts of two US east coast dune grass species (<i>Uniola paniculata</i> and <i>Ammophila breviligulata</i>). Peerl, 2018, 6, e4932.	0.9	26
34	The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches. Geophysical Research Letters, 2017, 44, 1839-1847.	1.5	98
35	Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nature Communications, 2017, 8, 14365.	5.8	158
36	Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra. Journal of Geophysical Research: Oceans, 2017, 122, 1400-1415.	1.0	17

#	Article	IF	CITATIONS
37	A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing. Scientific Reports, 2017, 7, 5038.	1.6	85
38	Large runup controls on a gently sloping dissipative beach. Journal of Geophysical Research: Oceans, 2017, 122, 5998-6010.	1.0	21
39	Coastal protection and conservation on sandy beaches and dunes: contextâ€dependent tradeoffs in ecosystem service supply. Ecosphere, 2017, 8, e01791.	1.0	36
40	Morphodynamics of prograding beaches: A synthesis of seasonal- to century-scale observations of the Columbia River littoral cell. Marine Geology, 2016, 376, 51-68.	0.9	50
41	Vegetation control allows autocyclic formation of multiple dunes on prograding coasts. Geology, 2016, 44, 559-562.	2.0	43
42	A multiscale climate emulator for longâ€term morphodynamics (MUSCLEâ€morpho). Journal of Geophysical Research: Oceans, 2016, 121, 775-791.	1.0	44
43	The influence of seasonal to interannual nearshore profile variability on extreme water levels: Modeling wave runup on dissipative beaches. Coastal Engineering, 2016, 115, 79-92.	1.7	58
44	The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience. PLoS ONE, 2016, 11, e0158094.	1.1	210
45	Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs. Earth's Future, 2015, 3, 220-251.	2.4	98
46	Invasive Congeners Differ in Successional Impacts across Space and Time. PLoS ONE, 2015, 10, e0117283.	1.1	18
47	OBSERVATIONS OF INTERTIDAL BAR WELDING ALONG A HIGH ENERGY, DISSIPATIVE COASTLINE. , 2015, , .		3
48	Regional scale sandbar variability: Observations from the U.S. Pacific Northwest. Continental Shelf Research, 2015, 95, 74-88.	0.9	29
49	Incorporating climate change and morphological uncertainty into coastal change hazard assessments. Natural Hazards, 2015, 75, 2081-2102.	1.6	10
50	Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Modelling, 2015, 96, 171-185.	1.0	94
51	Integrated modeling framework to quantify the coastal protection services supplied by vegetation. Journal of Geophysical Research: Oceans, 2015, 120, 324-345.	1.0	59
52	Coastal vulnerability across the Pacific dominated by El Ni $\tilde{A}\pm o/S$ outhern Oscillation. Nature Geoscience, 2015, 8, 801-807.	5.4	279
53	Coastal foredune evolution: the relative influence of vegetation and sand supply in the US Pacific Northwest. Journal of the Royal Society Interface, 2015, 12, 20150017.	1.5	61
54	Investigating the role of complex sandbar morphology on nearshore hydrodynamics. Journal of Coastal Research, 2014, 70, 53-58.	0.1	10

#	Article	IF	Citations
55	Simulating extreme total water levels using a timeâ€dependent, extreme value approach. Journal of Geophysical Research: Oceans, 2014, 119, 6305-6329.	1.0	122
56	Estimating Storm-Induced Dune Erosion and Overtopping along U.S. West Coast Beaches. Journal of Coastal Research, 2014, 298, 1173-1187.	0.1	48
57	Wave resource assessment in Oregon and southwest Washington, USA. Renewable Energy, 2014, 64, 203-214.	4.3	58
58	Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Natural Hazards, 2014, 74, 1095-1125.	1.6	121
59	U.S. Pacific Northwest Coastal Hazards: Tectonic and Climate Controls. Coastal Research Library, 2013, , 587-674.	0.2	2
60	Invasive grasses, climate change, and exposure to stormâ€wave overtopping in coastal dune ecosystems. Global Change Biology, 2013, 19, 824-832.	4.2	73
61	An Inner-Shelf Wave Forecasting System for the U.S. Pacific Northwest. Weather and Forecasting, 2013, 28, 681-703.	0.5	36
62	Is the Intensifying Wave Climate of the U.S. Pacific Northwest Increasing Flooding and Erosion Risk Faster Than Sea-Level Rise?. Journal of Waterway, Port, Coastal and Ocean Engineering, 2013, 139, 88-97.	0.5	68
63	Pacific Storms Climatology Products (PSCP): Understanding Extreme Events. Bulletin of the American Meteorological Society, 2013, 94, 13-18.	1.7	11
64	Coasts., 2013,, 67-109.		0
65	Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 107-121.	2.9	217
66	Biophysical feedback mediates effects of invasive grasses on coastal dune shape. Ecology, 2012, 93, 1439-1450.	1.5	126
67	Subtle differences in two nonâ€native congeneric beach grasses significantly affect their colonization, spread, and impact. Oikos, 2012, 121, 138-148.	1.2	99
68	Physical Climate Forces., 2012,, 10-51.		0
69	Sea Level Variations along the U.S. Pacific Northwest Coast: Tectonic and Climate Controls. Journal of Coastal Research, 2011, 276, 808-823.	0.1	46
70	The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	48
71	Earth's Changing Climate and Enhanced Erosion of the U.S. Pacific Northwest Coast., 2011,,.		2
72	Planning Level Assessment of the Impacts of Sea Level Rise to the California Coast., 2011,,.		1

#	Article	IF	CITATIONS
73	Incorporating Uncertainty Associated with Climate Change into Coastal Vulnerability Assessments. , 2011, , .		2
74	Storm Surge Magnitudes and Frequency on the Central Oregon Coast., 2011,,.		9
75	A methodology for predicting future coastal hazards due to sea-level rise on the California Coast. Climatic Change, 2011, 109, 251-276.	1.7	39
76	INTERANNUAL TO DECADAL FOREDUNE EVOLUTION. , 2011, , .		11
77	Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coastal Engineering, 2010, 57, 539-552.	1.7	233
78	Historical evolution of the Columbia River littoral cell. Marine Geology, 2010, 273, 96-126.	0.9	46
79	Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Marine Geology, 2010, 273, 127-140.	0.9	75
80	Cobble cam: grainâ€size measurements of sand to boulder from digital photographs and autocorrelation analyses. Earth Surface Processes and Landforms, 2009, 34, 1811-1821.	1.2	71
81	Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling. Coastal Engineering, 2009, 56, 1153-1172.	1.7	57
82	Improving Accuracy and Statistical Reliability of Shoreline Position and Change Rate Estimates. Journal of Coastal Research, 2009, 255, 1069-1081.	0.1	59
83	Beach morphology and change along the mixed grain-size delta of the dammed Elwha River, Washington. Geomorphology, 2009, 111, 136-148.	1.1	41
84	Ocean Wave Climates: Trends and Variations Due to Earth's Changing Climate., 2009,, 971-995.		11
85	Coastal geomorphology, hazards, and management issues along the Pacific Northwest coast of Oregon and Washington., 2009,,.		4
86	Impacts of Climate Change on Coastal Erosion and Flood Probability in the US Pacific Northwest. , 2008, , .		11
87	Increasing Wave Heights along the Shores of the United States: Climate Controls and Hazards. , 2008, ,		3
88	Mixed Sediment Beach Processes: Kachemak Bay, Alaska. , 2007, , 463.		4
89	Intertidal sand body migration along a megatidal coast, Kachemak Bay, Alaska. Journal of Geophysical Research, 2007, 112, .	3.3	11
90	Shoreface Response to Sediment Deficit. , 2007, , .		0

#	Article	IF	CITATIONS
91	Implementing Regional Sediment Management to Sustain Navigation at an Energetic Tidal Inlet., 2007,,.		4
92	Wave Energy Dissipation by Intertidal Sand Waves on a Mixed-Sediment Beach. , 2006, , 1.		1
93	Comparing Mean High Water and High Water Line Shorelines: Should Proxy-Datum Offsets be Incorporated into Shoreline Change Analysis?. Journal of Coastal Research, 2006, 224, 894-905.	0.1	94
94	Modeling Nearshore Morphological Evolution at Seasonal Scale. , 2006, , 1.		2
95	Northwest Sumatra and Offshore Islands Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 105-135.	1.6	79
96	Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell. Journal of Coastal Research, 2005, 213, 553-578.	0.1	156
97	Wave run-up on a high-energy dissipative beach. Journal of Geophysical Research, 2004, 109, .	3.3	129
98	El Niño and La Niña: Erosion Processes and Impacts. , 2001, , 2414.		6
99	Sensitivity of Shoreline Change Predictions to Wave Climate Variability along the Southwest Washington Coast, USA., 2001,, 617.		3
100	An analytic model for the prediction of wave setup, longshore currents and sediment transport on beaches with seawalls. Coastal Engineering, 2001, 43, 161-182.	1.7	20
101	Exploring the Relationship between Nearshore Morphology and Shoreline Change. , 2001, , .		1
102	Extreme Water Levels, Wave Runup and Coastal Erosion. , 1997, , 2793.		7