List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161207/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration. International Journal of Engineering Science, 2010, 48, 2044-2053.	2.7	250
2	Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dynamics, 2014, 77, 967-981.	2.7	187
3	Vibration analysis of microscale plates based on modified couple stress theory. Acta Mechanica Solida Sinica, 2010, 23, 386-393.	1.0	183
4	Size-dependent vibration characteristics of fluid-conveying microtubes. Journal of Fluids and Structures, 2010, 26, 675-684.	1.5	171
5	The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3179-3182.	1.3	168
6	Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. Journal of Intelligent Material Systems and Structures, 2014, 25, 1861-1874.	1.4	149
7	Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Applied Energy, 2017, 203, 142-153.	5.1	146
8	Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1835-1840.	1.3	144
9	A standard experimental method for determining the material length scale based on modified couple stress theory. International Journal of Mechanical Sciences, 2018, 141, 198-205.	3.6	141
10	Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters, 2016, 108, .	1.5	125
11	Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. Journal of Sound and Vibration, 2017, 408, 210-219.	2.1	123
12	Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. International Journal of Engineering Science, 2015, 94, 103-112.	2.7	120
13	Modeling and performance of electromagnetic energy harvesting from galloping oscillations. Smart Materials and Structures, 2015, 24, 045012.	1.8	119
14	A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid. Mechanics Research Communications, 2009, 36, 833-837.	1.0	110
15	Application of the differential transformation method to vibration analysis of pipes conveying fluid. Applied Mathematics and Computation, 2011, 217, 7028-7038.	1.4	107
16	Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy, 2020, 70, 104477.	8.2	106
17	Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Computational Materials Science, 2009, 45, 584-588.	1.4	105
18	Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 437-439.	1.3	104

#	Article	IF	CITATIONS
19	Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes. Journal of Fluids and Structures, 2013, 39, 322-334.	1.5	102
20	Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Computational Materials Science, 2010, 49, 761-766.	1.4	97
21	Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. International Journal of Engineering Science, 2014, 84, 1-10.	2.7	96
22	On vibration and instability of carbon nanotubes conveying fluid. Computational Materials Science, 2008, 43, 399-402.	1.4	94
23	3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dynamics, 2009, 56, 453-462.	2.7	93
24	A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid. International Journal of Non-Linear Mechanics, 2009, 44, 115-121.	1.4	86
25	Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections. Energy, 2019, 167, 970-981.	4.5	86
26	Vortex-induced vibrations mitigation through a nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 22-36.	1.7	85
27	Dynamics of simply supported fluid-conveying pipes with geometric imperfections. Journal of Fluids and Structures, 2012, 29, 97-106.	1.5	81
28	Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. International Journal of Engineering Science, 2013, 71, 92-101.	2.7	79
29	Vortex-induced vibrations of pipes conveying pulsating fluid. Ocean Engineering, 2014, 77, 12-22.	1.9	79
30	A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Composites Part B: Engineering, 2015, 79, 553-580.	5.9	79
31	Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. International Journal of Engineering Science, 2016, 105, 93-107.	2.7	77
32	Buckling instability of double-wall carbon nanotubes conveying fluid. Computational Materials Science, 2008, 44, 821-825.	1.4	71
33	Design of high-efficiency electromagnetic energy harvester based on a rolling magnet. Energy Conversion and Management, 2019, 185, 202-210.	4.4	71
34	Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment. International Journal of Engineering Science, 2013, 68, 1-10.	2.7	69
35	Dynamics of a fluid-conveying pipe composed of two different materials. International Journal of Engineering Science, 2013, 73, 67-76.	2.7	68
36	Improving the performance of aeroelastic energy harvesters by an interference cylinder. Applied Physics Letters, 2017, 111, .	1.5	66

#	Article	IF	CITATIONS
37	Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models. Journal of Sound and Vibration, 2018, 422, 590-612.	2.1	65
38	Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluidics and Nanofluidics, 2010, 9, 955-962.	1.0	64
39	Modeling and nonlinear dynamics of fluid-conveying risers under hybrid excitations. International Journal of Engineering Science, 2014, 81, 1-14.	2.7	64
40	Dynamics of axially functionally graded cantilevered pipes conveying fluid. Composite Structures, 2018, 190, 112-118.	3.1	62
41	Dynamic Stability of Periodic Pipes Conveying Fluid. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	61
42	Natural Frequency and Stability Tuning of Cantilevered CNTs Conveying Fluid in Magnetic Field. Acta Mechanica Solida Sinica, 2016, 29, 567-576.	1.0	59
43	Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape. Computational Materials Science, 2010, 49, 99-103.	1.4	58
44	Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method. Applied Mathematics and Computation, 2012, 219, 2453-2464.	1.4	57
45	A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 25-28.	1.3	56
46	Strain gradient beam model for dynamics of microscale pipes conveying fluid. Applied Mathematical Modelling, 2011, 35, 2864-2873.	2.2	55
47	Instability of simply supported pipes conveying fluid under thermal loads. Mechanics Research Communications, 2009, 36, 413-417.	1.0	53
48	Nonlinear dynamics of a fluid-conveying pipe under the combined action of cross-flow and top-end excitations. Applied Ocean Research, 2017, 62, 199-209.	1.8	49
49	Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Applied Energy, 2019, 254, 113737.	5.1	49
50	Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. Journal of Sound and Vibration, 2021, 490, 115711.	2.1	49
51	Size effect on the static behavior of electrostatically actuated microbeams. Acta Mechanica Sinica/Lixue Xuebao, 2011, 27, 445-451.	1.5	47
52	Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field. Applied Mathematical Modelling, 2018, 55, 758-775.	2.2	47
53	On mechanics of functionally graded hard-magnetic soft beams. International Journal of Engineering Science, 2020, 157, 103391.	2.7	47
54	Nonlinear dynamics of cantilevered pipes conveying fluid: Towards a further understanding of the effect of loose constraints. International Journal of Non-Linear Mechanics, 2017, 95, 19-29.	1.4	45

#	Article	IF	CITATIONS
55	Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 2019, 95, 1435-1456.	2.7	45
56	Vortex-induced vibration triboelectric nanogenerator for low speed wind energy harvesting. Nano Energy, 2022, 95, 107029.	8.2	45
57	On nonlinear behavior and buckling of fluid-transporting nanotubes. International Journal of Engineering Science, 2015, 87, 13-22.	2.7	44
58	Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluidics and Nanofluidics, 2015, 18, 49-55.	1.0	41
59	Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. Journal of Sound and Vibration, 2014, 333, 2543-2555.	2.1	39
60	Surface effect on buckling configuration of nanobeams containing internal flowing fluid: A nonlinear analysis. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 808-812.	1.3	38
61	In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid. Nonlinear Dynamics, 2014, 75, 603-619.	2.7	38
62	Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro and Nano Letters, 2012, 7, 679.	0.6	37
63	Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory. International Journal of Engineering Science, 2014, 85, 20-30.	2.7	37
64	Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 2015, 81, 893-906.	2.7	37
65	Time-delay feedback controller for amplitude reduction in vortex-induced vibrations. Nonlinear Dynamics, 2015, 80, 59-70.	2.7	34
66	Nonlinear analysis and characteristics of inductive galloping energy harvesters. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 580-591.	1.7	34
67	Three-dimensional large-deformation model of hard-magnetic soft beams. Composite Structures, 2021, 266, 113822.	3.1	34
68	Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	34
69	Flutter instability of supported pipes conveying fluid subjected to distributed follower forces. Acta Mechanica Solida Sinica, 2012, 25, 46-52.	1.0	33
70	Usefulness of passive non-linear energy sinks in controlling galloping vibrations. International Journal of Non-Linear Mechanics, 2016, 81, 83-94.	1.4	33
71	Size-dependent pull-in voltage and nonlinear dynamics of electrically actuated microcantilever-based MEMS: A full nonlinear analysis. Communications in Nonlinear Science and Numerical Simulation, 2017, 46, 116-125.	1.7	33
72	A note on the stability and chaotic motions of a restrained pipe conveying fluid. Journal of Sound and Vibration, 2006, 296, 1079-1083.	2.1	31

#	Article	IF	CITATIONS
73	Nonlinear free vibration of a cantilever nanobeam with surface effects: Semi-analytical solutions. International Journal of Mechanical Sciences, 2016, 113, 184-195.	3.6	31
74	Nonlinear Forced Vibration of Cantilevered Pipes Conveying Fluid. Acta Mechanica Solida Sinica, 2018, 31, 32-50.	1.0	31
75	Nonplanar multi-modal vibrations of fluid-conveying risers under shear cross flows. Applied Ocean Research, 2019, 88, 187-209.	1.8	31
76	Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics. Energies, 2020, 13, 71.	1.6	31
77	Nonplanar vortex-induced vibrations of cantilevered pipes conveying fluid subjected to loose constraints. Ocean Engineering, 2019, 178, 1-19.	1.9	30
78	Nonlinear free vibration of nanobeams based on nonlocal strain gradient theory with the consideration of thickness-dependent size effect. Journal of Mechanics of Materials and Structures, 2019, 14, 119-137.	0.4	29
79	Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dynamics, 2019, 98, 2097-2114.	2.7	28
80	Vibration analysis of nanotubes conveying fluid based on gradient elasticity theory. JVC/Journal of Vibration and Control, 2012, 18, 313-320.	1.5	27
81	Aeroelastic galloping response of square prisms: The role of time-delayed feedbacks. International Journal of Engineering Science, 2014, 75, 79-84.	2.7	27
82	Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks. Nonlinear Dynamics, 2014, 78, 907-919.	2.7	27
83	Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. Journal of Sound and Vibration, 2020, 471, 115189.	2.1	27
84	Free Vibration of Micro- and Nano-Shells Based on Modified Couple Stress Theory. Journal of Computational and Theoretical Nanoscience, 2012, 9, 814-818.	0.4	26
85	Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dynamics, 2018, 93, 505-524.	2.7	26
86	Stability and Nonlinear Vibration Analysis of an Axially Loaded Nanobeam Based on Nonlocal Strain Gradient Theory. International Journal of Applied Mechanics, 2019, 11, 1950069.	1.3	26
87	Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density. Soft Matter, 2020, 16, 6379-6388.	1.2	26
88	Nonlinear analysis of L-shaped pipe conveying fluid with the aid of absolute nodal coordinate formulation. Nonlinear Dynamics, 2022, 107, 391-412.	2.7	26
89	Vibration and enhanced stability properties of fluid-conveying pipes with two symmetric elbows fitted at downstream end. Archive of Applied Mechanics, 2012, 82, 155-161.	1.2	25
90	Vibration and stability of vertical upward-fluid-conveying pipe immersed in rigid cylindrical channel. Acta Mechanica Solida Sinica, 2008, 21, 431-440.	1.0	24

#	Article	IF	CITATIONS
91	Surface effect on the nonlinear forced vibration of cantilevered nanobeams. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 80, 25-30.	1.3	24
92	Three-dimensional dynamics of supported pipes conveying fluid. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 1065-1074.	1.5	23
93	Nonlinear analysis of flexoelectric energy harvesters under force excitations. International Journal of Mechanics and Materials in Design, 2020, 16, 19-33.	1.7	23
94	Planar and non-planar vibrations of a fluid-conveying cantilevered pipe subjected to axial base excitation. Nonlinear Dynamics, 2020, 99, 2527-2549.	2.7	23
95	A magnetic control method for large-deformation vibration of cantilevered pipe conveying fluid. Nonlinear Dynamics, 2021, 105, 1459-1481.	2.7	23
96	Cross-flow-induced instability and nonlinear dynamics of cylinder arrays with consideration of initial axial load. Nonlinear Dynamics, 2012, 67, 1043-1051.	2.7	22
97	Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity. Applied Mathematics and Mechanics (English Edition), 2020, 41, 1381-1400.	1.9	22
98	Control of base-excited dynamical systems through piezoelectric energy harvesting absorber. Smart Materials and Structures, 2017, 26, 095013.	1.8	21
99	Three-dimensional vibration of cantilevered fluid-conveying micropipes—Types of periodic motions and small-scale effect. International Journal of Non-Linear Mechanics, 2018, 102, 112-135.	1.4	21
100	Dynamic effective equivalent stiffness analysis on the periodical honeycomb reinforced composite laminated structure filled with viscoelastic damping material. Composite Structures, 2018, 193, 306-320.	3.1	21
101	Hopf bifurcation and chaotic motions of a tubular cantilever subject to cross flow and loose support. Nonlinear Dynamics, 2010, 59, 329-338.	2.7	20
102	Internal-external resonance of a curved pipe conveying fluid resting on a nonlinear elastic foundation. Nonlinear Dynamics, 2014, 76, 867-886.	2.7	20
103	Surface effect on the pull-in instability of cantilevered nano-switches based on a full nonlinear model. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 73, 141-147.	1.3	20
104	Nonlinear Vibration of A Loosely Supported Curved Pipe Conveying Pulsating Fluid under Principal Parametric Resonance. Acta Mechanica Solida Sinica, 2016, 29, 468-478.	1.0	20
105	Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dynamics, 2015, 82, 1709-1719.	2.7	19
106	New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 2021, 42, 703-720.	1.9	19
107	Three-dimensional dynamical model for cantilevered pipes conveying fluid under large deformation. Journal of Fluids and Structures, 2021, 105, 103329.	1.5	19
108	Geometrically exact model and dynamics of cantilevered curved pipe conveying fluid. Journal of Sound and Vibration, 2022, 534, 117074.	2.1	19

#	Article	IF	CITATIONS
109	Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors. Chaos, 2009, 19, 013107.	1.0	18
110	Three-dimensional dynamics of fluid-conveying pipe simultaneously subjected to external axial flow. Ocean Engineering, 2020, 217, 107970.	1.9	18
111	Modeling and nonlinear dynamics of cantilevered pipe with tapered free end concurrently subjected to axial internal and external flows. Mechanical Systems and Signal Processing, 2022, 169, 108794.	4.4	18
112	Nonlinear Responses of a Fluid-Conveying Pipe Embedded in Nonlinear Elastic Foundations. Acta Mechanica Solida Sinica, 2008, 21, 170-176.	1.0	17
113	Nonlinear dynamics of a sliding pipe conveying fluid. Journal of Fluids and Structures, 2018, 81, 36-57.	1.5	17
114	LARGE-AMPLITUDE FREE VIBRATIONS OF FLUID-CONVEYING PIPES ON A PASTERNAK FOUNDATION. International Journal of Structural Stability and Dynamics, 2008, 08, 615-626.	1.5	16
115	The effect of axial extension on the fluidelastic vibration of an array of cylinders in cross-flow. Nuclear Engineering and Design, 2010, 240, 1707-1713.	0.8	16
116	Dynamics and instability of current-carrying microbeams in a longitudinal magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 87-92.	1.3	16
117	Effect of initial stretch ratio on the electromechanical responses of dielectric elastomer actuators. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	16
118	Mode exchange and unstable modes in the dynamics of conical pipes conveying fluid. JVC/Journal of Vibration and Control, 2016, 22, 1003-1009.	1.5	16
119	Towards control of cross-flow-induced vibrations based on energy harvesting. Nonlinear Dynamics, 2017, 88, 2329-2346.	2.7	16
120	Low-velocity impact response of viscoelastic material filled FG honeycomb reinforced laminate plate in hygrothermal environments. Composites Part B: Engineering, 2019, 165, 255-271.	5.9	16
121	Nonlinear Free Vibration of Hyperelastic Beams Based on Neo-Hookean Model. International Journal of Structural Stability and Dynamics, 2020, 20, 2050015.	1.5	16
122	Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid. Acta Mechanica Solida Sinica, 2014, 27, 162-171.	1.0	15
123	Nonconservative pipes conveying fluid: evolution of mode shapes with increasing flow velocity. JVC/Journal of Vibration and Control, 2015, 21, 3359-3367.	1.5	15
124	Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field. Acta Mechanica Solida Sinica, 2017, 30, 465-473.	1.0	15
125	Nonlinear dynamic responses of electrostatically actuated microcantilevers containing internal fluid flow. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	15
126	Suppressing Wind-Induced Oscillations of Prismatic Structures by Dynamic Vibration Absorbers. International Journal of Structural Stability and Dynamics, 2017, 17, 1750056.	1.5	14

#	Article	IF	CITATIONS
127	Nonlinear dynamics of an underwater slender beam with two axially moving supports. Ocean Engineering, 2015, 108, 402-415.	1.9	13
128	Dynamics and stability of an extending beam attached to an axially moving base immersed in dense fluid. Journal of Sound and Vibration, 2016, 383, 364-383.	2.1	13
129	Dynamics and Stability of Magnetically Actuated Pipes Conveying Fluid. International Journal of Structural Stability and Dynamics, 2016, 16, 1550026.	1.5	13
130	Vibration of Slender Structures Subjected to Axial Flow or Axially Towed in Quiescent Fluid. Advances in Acoustics and Vibration, 2009, 2009, 1-19.	0.5	11
131	Non-smooth dynamics of articulated pipe conveying fluid subjected to a one-sided rigid stop. Applied Mathematical Modelling, 2021, 89, 802-818.	2.2	11
132	In-plane and out-of-plane free vibration and stability of a curved rod in flow. Journal of Fluids and Structures, 2014, 49, 667-686.	1.5	10
133	Nonplanar post-buckling analysis of simply supported pipes conveying fluid with an axially sliding downstream end. Applied Mathematics and Mechanics (English Edition), 2020, 41, 15-32.	1.9	9
134	Vortex-induced vibrations of a pipe subjected to unsynchronized support motions. Journal of Marine Science and Technology, 2018, 23, 978-990.	1.3	8
135	Vortex-induced vibration of pipes conveying fluid using the method of multiple scales. Theoretical and Applied Mechanics Letters, 2012, 2, 022006.	1.3	7
136	Modeling and Identification of Circular Cylinder-based Piezoaeroelastic Energy Harvesters. Energy Procedia, 2014, 61, 2818-2821.	1.8	7
137	Enhanced Stability of Two-Material Panels in Supersonic Flow: Optimization Strategy and Physical Explanation. AIAA Journal, 2019, 57, 5553-5565.	1.5	7
138	Nonplanar flow-induced vibrations of a cantilevered PIP structure system concurrently subjected to internal and cross flows. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 1241-1256.	1.5	7
139	Dynamics and stability analysis of an axially moving beam in axial flow. Journal of Mechanics of Materials and Structures, 2020, 15, 37-60.	0.4	7
140	Utilization of nonlinear vibrations of soft pipe conveying fluid for driving underwater bio-inspired robot. Applied Mathematics and Mechanics (English Edition), 2022, 43, 1109-1124.	1.9	7
141	Nonlinear impacting oscillations of pipe conveying pulsating fluid subjected to distributed motion constraints. Journal of Mechanics of Materials and Structures, 2017, 12, 563-578.	0.4	6
142	Nonlinear dynamic analysis of cantilevered pipe conveying fluid with local rigid segment. Nonlinear Dynamics, 2022, 109, 1571-1589.	2.7	6
143	Stability analysis of a hybrid flexible-rigid pipe conveying fluid. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	5
144	Natural frequency analysis of fluid-conveying pipes in the ADINA system. Journal of Physics: Conference Series, 2013, 448, 012014.	0.3	4

#	Article	IF	CITATIONS
145	Flow-induced vibration of curved cylinder arrays subject to loose support. Nonlinear Dynamics, 2014, 78, 2533-2545.	2.7	4
146	Dynamics and Stability of Pinned-Free Micropipes Conveying Fluid. Journal of Mechanics, 2018, 34, 533-539.	0.7	4
147	Stability and nonplanar postbuckling behavior of current-carrying microwires in a longitudinal magnetic field. Journal of Mechanics of Materials and Structures, 2018, 13, 481-503.	0.4	4
148	Experimental investigation of the dissipation characteristic of sandwich structures with periodically perforated viscoelastic damping material core. JVC/Journal of Vibration and Control, 2019, 25, 2008-2024.	1.5	4
149	Stability and nonplanar buckling analysis of a current-carrying mircowire in three-dimensional magnetic field. Microsystem Technologies, 2019, 25, 4053-4066.	1.2	4
150	Stability and Chaotic Vibrations of a Fluid-Conveying Pipe with Additional Combined Constraints. Journal of Mechanics, 2009, 25, 85-93.	0.7	3
151	Characteristics and comparative analysis of monostable and bistable piezomagnetoelastic energy harvesters under vortex-induced vibrations. , 2018, , .		2
152	Vibration analysis of suspended microchannel resonators characterized as cantilevered micropipes conveying fluid and nanoparticle. Microsystem Technologies, 2019, 25, 197-210.	1.2	2
153	Three-dimensional nonlinear dynamics of a cantilevered pipe conveying fluid subjected to loose constraints. Chinese Science Bulletin, 2017, 62, 4270-4277.	0.4	2
154	Influence of Dry Friction on the Dynamics of Cantilevered Pipes Conveying Fluid. Applied Sciences (Switzerland), 2022, 12, 724.	1.3	2
155	On the potential of monostable piezomagnetoelastic energy harvesting from vortex-induced vibrations. , 2017, , .		1
156	Characteristics and control of base-excited dynamical system through a vibration absorber energy harvester. , 2017, , .		1
157	Cross-flow-induced transverse–torsional vibrations of slender structures mitigation via coupled controllers. International Journal of Non-Linear Mechanics, 2022, 142, 104000.	1.4	1
158	Non-linear responses of a one-sided constrained beam with base excitation. IMA Journal of Applied Mathematics, 2008, 74, 85-96.	0.8	0