

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161091/publications.pdf Version: 2024-02-01

Ιοροι ΡλνÃ

#	Article	IF	CITATIONS
1	Potential use of ceramic sanitary ware waste as pozzolanic material. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 611-621.	0.9	11
2	Biomass ashes to produce an alternative alkaline activator for alkali-activated cements. Materials Letters, 2022, 308, 131198.	1.3	10
3	Monitoring the pozzolanic effect of fly ash in blended OPC mortars by electrical impedance spectroscopy. Construction and Building Materials, 2022, 314, 125632.	3.2	12
4	Nonconventional alkaline activating solutions for alkali-activated mortars and concretes. , 2022, , 189-233.		0
5	Durability of Glass Fiber Reinforced Cement (GRC) Containing a High Proportion of Pozzolans. Applied Sciences (Switzerland), 2022, 12, 3696.	1.3	2
6	Hybrid Lime–Pozzolan Geopolymer Systems: Microstructural, Mechanical and Durability Studies. Materials, 2022, 15, 2736.	1.3	2
7	The role of dissolved rice husk ash in the development of binary blast furnace slag-sewage sludge ash alkali-activated mortars. Journal of Building Engineering, 2022, 52, 104472.	1.6	3
8	Reusing Construction and Demolition Waste to Prepare Alkali-Activated Cement. Materials, 2022, 15, 3437.	1.3	11
9	Improving the reactivity of a former ground sugarcane bagasse ash produced by autogenous combustion through employment of two different additional grinding procedures. Construction and Building Materials, 2021, 270, 121471.	3.2	5
10	Effects of slow dynamics and conditioning on non-linear hysteretic material assessment using impact resonance acoustic spectroscopy. Mechanical Systems and Signal Processing, 2021, 150, 107273.	4.4	3
11	Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials. Construction and Building Materials, 2021, 272, 122001.	3.2	15
12	Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements. Journal of Cleaner Production, 2021, 279, 123713.	4.6	58
13	Lime/pozzolan/geopolymer systems: Performance in pastes and mortars. Construction and Building Materials, 2021, 276, 122208.	3.2	10
14	Reuse of Industrial and Agricultural Waste in the Fabrication of Geopolymeric Binders: Mechanical and Microstructural Behavior. Materials, 2021, 14, 2089.	1.3	4
15	Air-Void System Characterization of Eco-Cellular Concretes. Journal of Materials in Civil Engineering, 2021, 33, 04021088.	1.3	0
16	Evaluation of the long-term compressive strength development of the sewage sludge ash/metakaolin-based geopolymer. Materiales De Construccion, 2021, 71, e254.	0.2	3
17	Almond-shell biomass ash (ABA): A greener alternative to the use of commercial alkaline reagents in alkali-activated cement. Construction and Building Materials, 2021, 290, 123251.	3.2	14
18	Evaluation of Rice Straw Ash as a Pozzolanic Addition in Cementitious Mixtures. Applied Sciences (Switzerland), 2021, 11, 773.	1.3	14

#	Article	IF	CITATIONS
19	Inorganic binders from petrochemical industry waste: The case of fluid catalytic cracking catalyst residue. , 2021, , 283-334.		4
20	Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production, 2020, 243, 118568.	4.6	62
21	Stabilization of soil by means alternative alkaliâ€activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology, 2020, 17, 190-196.	1.1	1
22	Salt slag recycled by-products in high insulation alternative environmentally friendly cellular concrete manufacturing. Construction and Building Materials, 2020, 231, 117114.	3.2	10
23	Formulation of Alkali-Activated Slag Binder Destined for Use in Developing Countries. Applied Sciences (Switzerland), 2020, 10, 9088.	1.3	3
24	Sustainable Soil-Compacted Blocks Containing Blast Furnace Slag (BFS) Activated with Olive Stone BIOMASS Ash (OBA). Sustainability, 2020, 12, 9824.	1.6	4
25	Concrete for Precast Blocks: Binary and Ternary Combination of Sewage Sludge Ash with Diverse Mineral Residue. Materials, 2020, 13, 4634.	1.3	3
26	One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment. Journal of Cleaner Production, 2020, 269, 122203.	4.6	21
27	One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Materials Letters, 2020, 272, 127882.	1.3	21
28	Effect of different high surface area silicas on the rheology of cement paste. Materiales De Construccion, 2020, 70, 231.	0.2	4
29	Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates. Sensors, 2019, 19, 4068.	2.1	4
30	Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin. Construction and Building Materials, 2019, 203, 95-103.	3.2	42
31	Nonlinear Acoustic Spectroscopy and Frequency Sweep Ultrasonics: Case on Thermal Damage Assessment in Mortar. Journal of Nondestructive Evaluation, 2019, 38, 1.	1.1	4
32	Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials, 2019, 208, 369-380.	3.2	31
33	Cement-Based Material Characterization Using Nonlinear Single-Impact Resonant Acoustic Spectroscopy (NSIRAS). , 2019, , 487-508.		2
34	Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count. , 2019, , 1-88.		14
35	Application of alkali-activated industrial waste. , 2019, , 357-424.		17

3

#	Article	IF	CITATIONS
37	Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 2018, 223, 10-13.	1.3	32
38	Influence of calcium additions on the compressive strength and microstructure of alkaliâ€activated ceramic sanitaryâ€ware. Journal of the American Ceramic Society, 2018, 101, 3094-3104.	1.9	20
39	Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG). Journal of Thermal Analysis and Calorimetry, 2018, 132, 39-46.	2.0	31
40	New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 2018, 171, 611-621.	3.2	57
41	Optimum Use of Sugar Cane Straw Ash in Alkali-Activated Binders Based on Blast Furnace Slag. Journal of Materials in Civil Engineering, 2018, 30, 04018084.	1.3	6
42	An Approach to a New Supplementary Cementing Material: Arundo donax Straw Ash. Sustainability, 2018, 10, 4273.	1.6	6
43	Microscopic Chemical Characterization and Reactivity in Cementing Systems of Elephant Grass Leaf Ashes. Microscopy and Microanalysis, 2018, 24, 593-603.	0.2	3
44	New eco-cellular concretes: sustainable and energy-efficient materials. Green Chemistry, 2018, 20, 4684-4694.	4.6	26
45	Effect of Pyrogenic Silica and Nanosilica on Portland Cement Matrices. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	10
46	Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 2018, 178, 327-338.	3.2	52
47	Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals (Basel, Switzerland), 2018, 8, 123.	0.8	13
48	The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag. Minerals (Basel, Switzerland), 2018, 8, 337.	0.8	5
49	Influence of microwave oven calcination on the pozzolanicity of sugar cane bagasse ashes (SCBA) from the cogeneration industry. Construction and Building Materials, 2018, 187, 892-902.	3.2	19
50	Flipped Accumulative Non-Linear Single Impact Resonance Acoustic Spectroscopy (FANSIRAS): A novel feature extraction algorithm for global damage assessment. Journal of Sound and Vibration, 2018, 432, 454-469.	2.1	12
51	Drying-rewetting cycles in ordinary Portland cement mortars investigated by electrical impedance spectroscopy. Construction and Building Materials, 2018, 187, 954-963.	3.2	4
52	Bagasse ash. , 2018, , 559-598.		19
53	Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Materiales De Construccion, 2018, 68, 153.	0.2	17
54	Resistance to acid attack of alkali-activated binders: Simple new techniques to measure susceptibility. Construction and Building Materials, 2017, 150, 355-366.	3.2	23

#	Article	IF	CITATIONS
55	A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 2017, 203, 46-49.	1.3	44
56	Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Construction and Building Materials, 2017, 144, 214-224.	3.2	34
57	Rice straw ash: A potential pozzolanic supplementary material for cementing systems. Industrial Crops and Products, 2017, 103, 39-50.	2.5	69
58	Ultrasonic and impact spectroscopy monitoring on internal sulphate attack of cement-based materials. Materials and Design, 2017, 125, 46-54.	3.3	19
59	Ultrasonic broadband signals monitoring of glass-fiber reinforced cement (CRC) bending tests. Cement and Concrete Composites, 2017, 80, 55-63.	4.6	8
60	Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. Journal of Cleaner Production, 2017, 168, 1120-1131.	4.6	28
61	Ultrasonic signal modality: A novel approach for concrete damage evaluation. Cement and Concrete Research, 2017, 101, 25-32.	4.6	30
62	Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceramics International, 2017, 43, 13622-13634.	2.3	55
63	Degradation Process of Postconsumer Waste Bottle Fibers Used in Portland Cement–Based Composites. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	9
64	Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature. Waste and Biomass Valorization, 2017, 8, 1441-1451.	1.8	32
65	New inorganic binders containing ashes from agricultural wastes. , 2017, , 127-164.		7
66	Preliminary studies on hydrated cement for its reuse in geopolymers. DYNA (Colombia), 2016, 83, 229-238.	0.2	3
67	Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement. Construction and Building Materials, 2016, 124, 208-218.	3.2	25
68	Ceramic tiles waste as replacement material in Portland cement. Advances in Cement Research, 2016, 28, 221-232.	0.7	41
69	Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials, 2016, 124, 148-154.	3.2	42
70	Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA). Materials Letters, 2016, 180, 192-195.	1.3	35
71	Pozzolanic Reactivity Studies on a Biomass-Derived Waste from Sugar Cane Production: Sugar Cane Straw Ash (SCSA). ACS Sustainable Chemistry and Engineering, 2016, 4, 4273-4279.	3.2	15
72	High strength mortars using ordinary Portland cement–fly ash–fluid catalytic cracking catalyst residue ternary system (OPC/FA/FCC). Construction and Building Materials, 2016, 106, 228-235.	3.2	33

#	Article	IF	CITATIONS
73	Evaluation of the pozzolanic activity of spent FCC catalyst/fly ash mixtures in Portland cement pastes. Thermochimica Acta, 2016, 632, 29-36.	1.2	50
74	Dynamic acousto-elastic test using continuous probe wave and transient vibration to investigate material nonlinearity. Ultrasonics, 2016, 69, 29-37.	2.1	23
75	Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel, 2016, 174, 307-316.	3.4	44
76	Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS). Materials and Design, 2016, 96, 424-430.	3.3	16
77	Potentiometric thick-film sensors for measuring the pH of concrete. Cement and Concrete Composites, 2016, 68, 66-76.	4.6	20
78	Use of ancient copper slags in Portland cement and alkali activated cement matrices. Journal of Environmental Management, 2016, 167, 115-123.	3.8	76
79	Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cement and Concrete Composites, 2016, 65, 177-185.	4.6	60
80	Optimized ultrasonic attenuation measures for non-homogeneous materials. Ultrasonics, 2016, 65, 345-352.	2.1	13
81	Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves. Microscopy and Microanalysis, 2015, 21, 1314-1326.	0.2	25
82	Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test. , 2015, , .		1
83	Preliminary study on short-term sulphate attack evaluation by non-linear impact resonance acoustic spectroscopy technique. Construction and Building Materials, 2015, 78, 295-302.	3.2	17
84	Study of durability of Portland cement mortars blended with silica nanoparticles. Construction and Building Materials, 2015, 80, 92-97.	3.2	85
85	Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders. , 2015, , 487-518.		7
86	Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars. Construction and Building Materials, 2015, 94, 670-677.	3.2	77
87	Multimodal analysis of GRC ageing process using nonlinear impact resonance acoustic spectroscopy. Composites Part B: Engineering, 2015, 76, 105-111.	5.9	8
88	Ultrasonic characterization of GRC with high percentage of fly ash substitution. Ultrasonics, 2015, 60, 88-95.	2.1	9
89	Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1511-1517.	2.0	12
90	The effects of moisture and micro-structural modifications in drying mortars on vibration-based NDT methods. Construction and Building Materials, 2015, 94, 565-571.	3.2	23

#	Article	lF	CITATIONS
91	Ternary Blended Cementitious Matrix for Vegetable Fiber Reinforced Composites. Key Engineering Materials, 2015, 668, 3-10.	0.4	3
92	Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials. Optical Engineering, 2015, 55, 011004.	0.5	8
93	Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, 2015, 41, 13012-13024.	2.3	93
94	Ceramic tiles waste as replacement material in Portland cement. Advances in Cement Research, 2015, , 1-12.	0.7	2
95	Performance of mortars produced with the incorporation of sugar cane bagasse ash. Revista Ingenieria De Construccion, 2014, 29, 187-199.	0.4	13
96	Spent FCC Catalyst for Preparing Alkali-Activated Binders: An Opportunity for a High-Degree Valorization. Key Engineering Materials, 2014, 600, 709-716.	0.4	7
97	Assessment of the Pozzolanic Activity of a Spent Catalyst by Conductivity Measurement of Aqueous Suspensions with Calcium Hydroxide. Materials, 2014, 7, 2561-2576.	1.3	11
98	Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan. Materials, 2014, 7, 7533-7547.	1.3	9
99	Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. Journal of the Acoustical Society of America, 2014, 135, EL82-EL87.	0.5	33
100	Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Materials & Design, 2014, 64, 535-541.	5.1	28
101	Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances, 2014, 4, 23846-23852.	1.7	115
102	Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. Journal of Cleaner Production, 2014, 82, 112-124.	4.6	113
103	Blending of industrial waste from different sources as partial substitution of Portland cement in pastes and mortars. Construction and Building Materials, 2014, 66, 645-653.	3.2	45
104	Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires. Materials & Design, 2014, 59, 550-557.	5.1	77
105	Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 2014, 63, 214-222.	3.2	52
106	Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 2014, 115, 72-74.	1.3	79
107	Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique. , 2014, , .		7
108	New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime:pozzolan suspensions. Materiales De Construccion, 2014, 64, e032.	0.2	18

#	Article	IF	CITATIONS
109	Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Materiales De Construccion, 2014, 64, e002.	0.2	24
110	Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC). Journal of Nondestructive Evaluation, 2013, 32, 300-314.	1.1	71
111	Immobilization of Zn(II) in Portland cement pastes. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1377-1389.	2.0	27
112	Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cement and Concrete Composites, 2013, 42, 41-48.	4.6	62
113	Alkaline Activation of Ceramic Waste Materials. Waste and Biomass Valorization, 2013, 4, 729-736.	1.8	114
114	Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Industrial Crops and Products, 2013, 49, 88-96.	2.5	53
115	Effect of curing time on microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Bulletin of Materials Science, 2013, 36, 245-249.	0.8	20
116	Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 2013, 108, 833-839.	3.4	45
117	Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 2013, 35, 1-11.	4.6	142
118	Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Industrial Crops and Products, 2013, 49, 422-427.	2.5	39
119	Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 2013, 109, 493-502.	3.4	66
120	The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cement and Concrete Research, 2013, 50, 51-61.	4.6	79
121	Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 2013, 43, 98-106.	3.2	252
122	Cement equivalence factor evaluations for fluid catalytic cracking catalyst residue. Cement and Concrete Composites, 2013, 39, 12-17.	4.6	28
123	Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials. Materials, 2013, 6, 3108-3127.	1.3	93
124	Pozzolanic reaction rate of fluid catalytic cracking catalyst residue (FC3R) in cement pastes. Advances in Cement Research, 2013, 25, 112-118.	0.7	20
125	Novel geopolymeric material cured at room temperature. Advances in Applied Ceramics, 2013, 112, 179-183.	0.6	13
126	Monitoring ageing of alkali resistant glass fiber reinforced cement (GRC) using guided ultrasonic waves. Proceedings of SPIE, 2013, , .	0.8	1

#	Article	IF	CITATIONS
127	Efecto de un aditivo extraÃdo de la planta <i>Agave americana</i> sobre las propiedades fÃsicas y mecánicas de un yeso. Materiales De Construccion, 2013, 63, 79-92.	0.2	1
128	Mechanical Strength of Lime-Rice Husk Ash Mortars: A Preliminary Study. Key Engineering Materials, 2012, 517, 495-499.	0.4	8
129	Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials, 2012, 1, 83-93.	1.7	18
130	Variables Involved in the Planting of Rice in the Rice Husk. Key Engineering Materials, 2012, 517, 430-436.	0.4	1
131	Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Construction and Building Materials, 2012, 36, 736-742.	3.2	80
132	Structure of Portland Cement Pastes Blended with Sonicated Silica Fume. Journal of Materials in Civil Engineering, 2012, 24, 1295-1304.	1.3	25
133	A new geopolymeric binder from hydrated-carbonated cement. Materials Letters, 2012, 74, 223-225.	1.3	29
134	New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 2012, 80, 50-52.	1.3	54
135	Increase of the reactivity of densified silica fume by sonication treatment. Ultrasonics Sonochemistry, 2012, 19, 1099-1107.	3.8	32
136	Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. Journal of Thermal Analysis and Calorimetry, 2012, 107, 233-239.	2.0	20
137	¿Es compatible la durabilidad con la sostenibilidad en la industria de la construcción?. Revista ALCONPAT, 2012, 2, 57-71.	0.2	0
138	Pozzolanic activity of a spent fluid catalytic cracking catalyst residue. Advances in Cement Research, 2011, 23, 105-111.	0.7	15
139	Effect of sonication on the reactivity of silica fume in Portland cement mortars. Advances in Cement Research, 2011, 23, 23-31.	0.7	19
140	Evaluación de las propiedades eléctricas de morteros de cemento con puzolanas. Materiales De Construccion, 2011, 61, 7-26.	0.2	8
141	The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cement and Concrete Composites, 2010, 32, 204-210.	4.6	43
142	Carbonation rate and reinforcing steel corrosion rate of OPC/FC3R/FA mortars under accelerated conditions. Advances in Cement Research, 2009, 21, 15-22.	0.7	17
143	Accelerated carbonation of cement pastes partially substituted with fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Composites, 2009, 31, 134-138.	4.6	23
144	Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cement and Concrete Research, 2009, 39, 126-139.	4.6	27

#	Article	IF	CITATIONS
145	The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Construction and Building Materials, 2009, 23, 1323-1328.	3.2	23
146	Estudio del comportamiento de diversos residuos de catalizadores de craqueo catalÃŧico (FCC) en cemento Portland. Materiales De Construccion, 2009, 59, 37-52.	0.2	14
147	The use of thermogravimetric analysis technique for the characterization of construction materials. Journal of Thermal Analysis and Calorimetry, 2008, 91, 503-509.	2.0	60
148	Mechanical and physical properties of cement blended with sewage sludge ash. Waste Management, 2008, 28, 2495-2502.	3.7	110
149	Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst. Corrosion Science, 2008, 50, 1567-1575.	3.0	50
150	Granulometric activation of densified silica fume (CSF) by sonication. Advances in Cement Research, 2008, 20, 129-135.	0.7	15
151	Estudio de la velocidad de corrosión de aceros embebidos en morteros de cemento sustituidos con residuo de catalizador de craqueo catalÃtico (FC3R). Materiales De Construccion, 2008, 58, .	0.2	5
152	Compatibility of fluid catalytic cracking catalyst residue (FC3R) with various types of cement. Advances in Cement Research, 2007, 19, 117-124.	0.7	15
153	The chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes. Advances in Cement Research, 2007, 19, 9-16.	0.7	12
154	Reusing fly ash in glass fibre reinforced cement: A new generation of high-quality GRC composites. Waste Management, 2007, 27, 1416-1421.	3.7	16
155	ACCELERATED CARBONATION OF PORTLAND CEMENT MORTARS PARTIALLY SUBSTITUTED WITH A SPENT FLUID CATALYTIC CRACKING CATALYST (FCC). , 2005, , 307-314.		0
156	Chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes: thermal analysis. Advances in Cement Research, 2004, 16, 123-130.	0.7	15
157	Chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes: thermal analysis. Advances in Cement Research, 2004, 16, 123-130.	0.7	7
158	Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, 2003, 33, 603-609.	4.6	135
159	Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes. Cement and Concrete Research, 2003, 33, 1085-1091.	4.6	93
160	Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Management, 2003, 23, 373-381.	3.7	130
161	Reaction of rice husk ash with OPC and portlandite. Advances in Cement Research, 2002, 14, 113-119.	0.7	7
162	Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. Journal of Chemical Technology and Biotechnology, 2002, 77, 321-325.	1.6	143

#	Article	IF	CITATIONS
163	Long term mechanical strength behaviour in fly ash/Portland cement mortars prepared using processed ashes. Journal of Chemical Technology and Biotechnology, 2002, 77, 336-344.	1.6	10
164	Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash. Journal of Chemical Technology and Biotechnology, 2002, 77, 331-335.	1.6	58
165	Loss on ignition and carbon content in pulverized fuel ashes (PFA): two crucial parameters for quality control. Journal of Chemical Technology and Biotechnology, 2002, 77, 251-255.	1.6	16
166	Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cement and Concrete Research, 2001, 31, 57-61.	4.6	68
167	Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cement and Concrete Research, 2001, 31, 41-49.	4.6	116
168	Determination of amorphous silica in rice husk ash by a rapid analytical method. Cement and Concrete Research, 2001, 31, 227-231.	4.6	91
169	Characterization of lagoon sediments and their pollutant charge. Proposals for reusing. Waste Management Series, 2000, 1, 1014-1021.	0.0	1
170	Mechanical treatment of fly ashes. Cement and Concrete Research, 2000, 30, 543-551.	4.6	74
171	Studies on crystalline rice husk ashes and the activation of their pozzolanic properties. Waste Management Series, 2000, 1, 493-503.	0.0	8
172	Properties of Portland cement mortars incorporating high amounts of oil-fuel ashes. Waste Management, 1999, 19, 1-7.	3.7	16
173	Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cement and Concrete Research, 1999, 29, 87-94.	4.6	93
174	Fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Research, 1999, 29, 1773-1779.	4.6	103
175	Thermogravimetric Methods for Determining Carbon Content in Fly Ashes. Cement and Concrete Research, 1998, 28, 675-686.	4.6	74
176	Properties of Portland Cement Mortars Incorporating High Amounts of Oil-Fuel Ashes Studies in Environmental Science, 1997, , 377-386.	0.0	0
177	Study of Cement-Based Mortars Containing Spanish Ground Sewage Sludge Ash. Studies in Environmental Science, 1997, 71, 349-354.	0.0	14
178	Mechanical treatments of fly ashes. Part III: Studies on strength development of ground fly ashes (GFA) — Cement mortars. Cement and Concrete Research, 1997, 27, 1365-1377.	4.6	90
179	Tuning of the electrochemical recognition of substrates as a function of the proton concentration in solution using pH-responsive redox-active receptor molecules. Journal of the Chemical Society Dalton Transactions, 1996, , 343-351.	1.1	29
180	Mechanical treatment of fly ashes part II: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars. Cement and Concrete Research, 1996, 26, 225-235.	4.6	98

#	Article	IF	CITATIONS
181	Use of sewage sludge ash(SSA)-cement admixtures in mortars. Cement and Concrete Research, 1996, 26, 1389-1398.	4.6	103
182	Synthesis and characterisation of the new diaza ferrocene macrocycle 1,1′-(2,6-diazahepta-1,6-diene) ferrocene and its parent amine 1,1′-(2,6-diazaheptane) ferrocene. Inorganica Chimica Acta, 1996, 247, 139-142.	1.2	8
183	Comparisons among magnetic and non-magnetic fly ash fractions: Strength development of cement-fly ash mortars. Waste Management, 1996, 16, 119-124. Ferrocene containing chelating ligands 3. Synthesis, spectroscopic characterization, electrochemical	3.7	27
184	behaviour and interaction with metal ions of new ligands obtained by condensation of ferrocenecarboxaldehyde with 2-amino-benzoic acid derivatives. Crystal structures of 2-ferrocenylmethylamino-5-methyl-benzoic acid and 2-bis(ferrocenylmethyl)ammonium-5-methyl-benzoic acid perchlorate. Inorganica Chimica Acta, 1995,	1.2	22
185	231, 45-56. Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground fly ashes. Cement and Concrete Research, 1995, 25, 1469-1479.	4.6	115
186	Early-strength development of portland cement mortars containing air classified fly ashes. Cement and Concrete Research, 1995, 25, 449-456.	4.6	60
187	Reaction of ferrocenecarbaldehyde with o-phenylenediamine. Crystal structure of N-ferrocenylmethyl-2-ferrocenyl-benzimidazole. Journal of Organometallic Chemistry, 1995, 503, 259-263.	0.8	28
188	Improvement of Portland Cement/Fly Ash Mortars Strength Using Classified Fly Ashes. Studies in Environmental Science, 1994, 60, 563-570.	0.0	3
189	A preliminary study of fly ash granulometric influence on mortar strength. Cement and Concrete Research, 1994, 24, 791-796.	4.6	32
190	The Assessment of Pollutant Charge of Dredged Sediments as a Tool to Minimize Adverse Environmental Effects. Studies in Environmental Science, 1994, 60, 929-938.	0.0	0
191	Influence of different sized fractions of a fly ash on workability of mortars. Cement and Concrete Research, 1993, 23, 917-924.	4.6	62
192	Ferrocene containing chelating ligands Part 2. Synthesis, characterization, electrochemical behaviour and crystal structure of 2-ferrocenylmethylamino-benzoic acid. Inorganica Chimica Acta, 1993, 210, 233-236.	1.2	11
193	Synthesis of orthometallated rhodium(III) compounds. Crystal structures of [RhCl2{η2î,(C6H4)PPh2}(η2-dppm)] and [RhCl{η2î,(C6H4)PPh2}(η1-PCCl)(phen)] (SbF6)·CH2Cl2 (dppm=bis(diphenylphosphino)methane; PCCl=P(o-ClC6H4)Ph2; phen=1,10 phenanthroline). Inorganica Chimica Acta, 1993, 209, 177-186.	1.2	8
194	Reactions of rhodium trifluoroacetate with triphenylphosphine and pyridine. Molecular structure of Rh2(O2CCF3)4(py)4. Inorganica Chimica Acta, 1993, 205, 91-97.	1.2	21
195	Oxamidato complexes. Part 4. Electrochemical study of the copper(III)/copper(II) couple in monomeric N,N?-bis(substituent)oxamidatocopper(II) complexes. Transition Metal Chemistry, 1993, 18, 69-72.	0.7	6
196	Synthesis, spectroscopic characterization and electrochemical behaviour of nickel(II) complexes with C-meso-5,5,7,12,12,14-hexamethylcyclotetradecane (Me6[14]aneN4). Crystal structure of {Ni(Me6[14]aneN4) I2. Transition Metal Chemistry, 1993, 18, 523-527.	0.7	12
197	New complexes of nickel and nickel/cobalt with tetrahydrofuran-2,3,4,5-tetracarboxylic acid, THF(COOH)4. Crystal structures of Ni[THF(COOH)2(COOH)2](H2O)3 and Ni0.7Co0.3[THF(COOH)2(COO)2](H2O)3Å·H2O and their thermal behaviour. Polyhedron, 1993, 12, 1681-1687.	1.0	14
198	Orthometallation reaction in dirhodium(II) compounds. Selective formation of doubly-metallated compounds with head-to-head structure. Polyhedron, 1993, 12, 1715-1717.	1.0	11

#	Article	IF	CITATIONS
199	Selective ortho-metallation reaction of the phosphine P(o-ClC6H4)Ph2. Synthesis and crystal		

#	Article	IF	CITATIONS
217	Use of Ceramic Sanitaryware as an Alternative for the Development of New Sustainable Binders. Key Engineering Materials, 0, 668, 172-180.	0.4	21