Jacob Rosen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11610449/publications.pdf Version: 2024-02-01

LACOB ROSEN

#	Article	IF	CITATIONS
1	Upper-Limb Powered Exoskeleton Design. IEEE/ASME Transactions on Mechatronics, 2007, 12, 408-417.	3.7	788
2	Raven-II: An Open Platform for Surgical Robotics Research. IEEE Transactions on Biomedical Engineering, 2013, 60, 954-959.	2.5	304
3	The RAVEN: Design and Validation of a Telesurgery System. International Journal of Robotics Research, 2009, 28, 1183-1197.	5.8	209
4	Real-Time Myoprocessors for a Neural Controlled Powered Exoskeleton Arm. IEEE Transactions on Biomedical Engineering, 2006, 53, 2387-2396.	2.5	202
5	Generalized Approach for Modeling Minimally Invasive Surgery as a Stochastic Process Using a Discrete Markov Model. IEEE Transactions on Biomedical Engineering, 2006, 53, 399-413.	2.5	195
6	Biomechanical Properties of Abdominal Organs In Vivo and Postmortem Under Compression Loads. Journal of Biomechanical Engineering, 2008, 130, 021020.	0.6	185
7	Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches. IEEE Transactions on Biomedical Engineering, 2006, 53, 1440-1445.	2.5	156
8	Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton. IEEE Transactions on Cybernetics, 2013, 43, 673-684.	6.2	138
9	Performances of Hill-Type and Neural Network Muscle Models—Toward a Myosignal-Based Exoskeleton. Journal of Biomedical Informatics, 1999, 32, 415-439.	0.7	107
10	Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model. Computer Aided Surgery, 2002, 7, 49-61.	1.8	106
11	Kinematic Data Analysis for Post-Stroke Patients Following Bilateral Versus Unilateral Rehabilitation With an Upper Limb Wearable Robotic System. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 153-164.	2.7	106
12	Assessment of Tissue Damage due to Mechanical Stresses. International Journal of Robotics Research, 2007, 26, 1159-1171.	5.8	102
13	Redundancy Resolution of the Human Arm and an Upper Limb Exoskeleton. IEEE Transactions on Biomedical Engineering, 2012, 59, 1770-1779.	2.5	68
14	A novel linear PID controller for an upper limb exoskeleton. , 2010, , .		66
15	UPPER LIMB POWERED EXOSKELETON. International Journal of Humanoid Robotics, 2007, 04, 529-548.	0.6	64
16	Evaluation of Unmanned Airborne Vehicles and Mobile Robotic Telesurgery in an Extreme Environment. Telemedicine Journal and E-Health, 2008, 14, 539-544.	1.6	56
17	Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. Journal of Hand Therapy, 2013, 26, 343-352.	0.7	55
18	Autonomous suturing via surgical robot: An algorithm for optimal selection of needle diameter, shape, and path. , 2017, , .		47

JACOB ROSEN

#	Article	IF	CITATIONS
19	Teleoperation in surgical robotics – network latency effects on surgical performance. , 2009, 2009, 6860-3.		44
20	Task decomposition of laparoscopic surgery for objective evaluation of surgical residents' learning curve using hidden Markov model. Computer Aided Surgery, 2002, 7, 49-61.	1.8	39
21	Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton. , 2010, , .		35
22	Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm. Applied Bionics and Biomechanics, 2009, 6, 175-191.	0.5	33
23	Predicting Redundancy of a 7 DOF Upper Limb Exoskeleton Toward Improved Transparency between Human and Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 80, 99-119.	2.0	31
24	InÂvitro evaluation of accuracy and precision of automated robotic tooth preparation system for porcelain laminate veneers. Journal of Prosthetic Dentistry, 2015, 114, 229-235.	1.1	30
25	PID admittance control for an upper limb exoskeleton. , 2011, , .		29
26	Modeling the Human Body/Seat System in a Vibration Environment. Journal of Biomechanical Engineering, 2003, 125, 223-231.	0.6	27
27	Plugfest 2009: Global interoperability in Telerobotics and telemedicine. , 2010, 2010, 1733-1738.		26
28	SCADE: Simultaneous Sensor Calibration and Deformation Estimation of FBG-Equipped Unmodeled Continuum Manipulators. IEEE Transactions on Robotics, 2020, 36, 222-239.	7.3	26
29	In-vivo and in-situ compressive properties of porcine abdominal soft tissues. Studies in Health Technology and Informatics, 2003, 94, 26-32.	0.2	26
30	The Blue DRAGONa system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. Studies in Health Technology and Informatics, 2002, 85, 412-8.	0.2	26
31	Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm. Applied Bionics and Biomechanics, 2009, 6, 175-191.	0.5	23
32	Raven: Developing a Surgical Robot from a Concept to a Transatlantic Teleoperation Experiment. , 2011, , 159-197.		22
33	Kinematic analysis of 7 degrees of freedom upper-limb exoskeleton robot with tilted shoulder abduction. International Journal of Precision Engineering and Manufacturing, 2013, 14, 69-76.	1.1	21
34	Roboscope: A flexible and bendable surgical robot for single portal Minimally Invasive Surgery. , 2017, ,		21
35	Redundancy resolution of a human arm for controlling a seven DOF wearable robotic system. , 2011, 2011, 3471-4.		20
36	Robotic Rehabilitation Game Design for Chronic Stroke. Games for Health Journal, 2012, 1, 422-430.	1.1	20

JACOB ROSEN

#	Article	IF	CITATIONS
37	Quantifying surgeon grasping mechanics in laparoscopy using the Blue DRAGON system. Studies in Health Technology and Informatics, 2004, 98, 34-6.	0.2	19
38	Resolving the redundancy of a seven DOF wearable robotic system based on kinematic and dynamic constraint. , 2012, , .		18
39	Asymmetric Dual Arm Approach For Post Stroke Recovery Of Motor Functions Utilizing The EXO-UL8 Exoskeleton System: A Pilot Study. , 2018, 2018, 1701-1707.		16
40	Sensor Reduction, Estimation, and Control of an Upper-Limb Exoskeleton. IEEE Robotics and Automation Letters, 2021, 6, 1012-1019.	3.3	15
41	Upper limb bilateral symmetric training with robotic assistance and clinical outcomes for stroke. International Journal of Intelligent Computing and Cybernetics, 2016, 9, 83-104.	1.6	14
42	Automated Tool Handling for the Trauma Pod Surgical Robot. , 2007, , .		13
43	Upper Limb Joint Space Modeling of Stroke Induced Synergies Using Isolated and Voluntary Arm Perturbations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 491-500.	2.7	12
44	Upper Limb Exoskeleton Systems—Overview. , 2020, , 1-22.		12
45	Rhythmic affects on stroke-induced joint synergies across a range of speeds. Experimental Brain Research, 2013, 229, 517-524.	0.7	11
46	Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 1020-1030.	2.7	11
47	Maximizing dexterous workspace and optimal port placement of a multi-arm surgical robot. , 2011, , .		10
48	Design of a Multi-Arm Surgical Robotic System for Dexterous Manipulation. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	10
49	Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System. , 2019, 2019, 611-617.		10
50	Objective assessment of telesurgical robot systems: Telerobotic FLS. Studies in Health Technology and Informatics, 2008, 132, 263-5.	0.2	10
51	Redundancy and joint limits of a seven degree of freedom upper limb exoskeleton. , 2011, 2011, 8154-7.		9
52	Spherical mechanism analysis of a surgical robot for minimally invasive surgery analytical and experimental approaches. Studies in Health Technology and Informatics, 2005, 111, 422-8.	0.2	8
53	Synthesizing Redundancy Resolution Criteria of the Human Arm Posture in Reaching Movements. Lecture Notes in Electrical Engineering, 2013, , 201-240.	0.3	7
54	Upper limb redundancy resolution under gravitational loading conditions: Arm postural stability index based on dynamic manipulability analysis. , 2017, , .		7

JACOB ROSEN

#	Article	IF	CITATIONS
55	The joint coordination in reach-to-grasp movements. , 2014, , .		6
56	Stroke-induced synergistic phase shifting and its possible implications for recovery mechanisms. Experimental Brain Research, 2014, 232, 3489-3499.	0.7	6
57	Autonomous Operation in Surgical Robotics. Mechanical Engineering, 2015, 137, S15-S18.	0.0	6
58	From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy. Experimental Brain Research, 2017, 235, 1627-1642.	0.7	6
59	Freeing the Serial Mechanism Designer from Inverse Kinematic Solvability Constraints. Applied Bionics and Biomechanics, 2010, 7, 209-216.	0.5	5
60	Minimally invasive surgery task decomposition–etymology of endoscopic suturing. Studies in Health Technology and Informatics, 2003, 94, 295-301.	0.2	5
61	Semi-Automated Extraction of Lens Fragments Via a Surgical Robot Using Semantic Segmentation of OCT Images With Deep Learning - Experimental Results in <i>Ex Vivo</i> Animal Model. IEEE Robotics and Automation Letters, 2021, 6, 5261-5268.	3.3	4
62	Constant Visual and Haptic Time Delays in Simulated Bilateral Teleoperation: Quantifying the Human Operator Performance. Presence: Teleoperators and Virtual Environments, 2013, 22, 271-290.	0.3	3
63	Task-relevance of grasping-related degrees of freedom in reach-to-grasp movements. , 2014, 2014, 6903-6.		3
64	EXO-UL Upper Limb Robotic Exoskeleton System Series: From 1 DOF Single-Arm to (7+1) DOFs Dual-Arm. , 2020, , 91-103.		1
65	Macro and Micro Soft-Tissue Biomechanics and Tissue Damage: Application in Surgical Robotics. , 2011, , 583-618.		1