
David N Mcmurray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11610327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405, 962-966.	13.7	971
2	Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infection and Immunity, 2008, 76, 2333-2340.	1.0	570
3	Dietary docosahexaenoic and eicosapentaenoic acid: Emerging mediators of inflammation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 81, 187-191.	1.0	243
4	Dietary Docosahexaenoic Acid Suppresses T Cell Protein Kinase CÎ, Lipid Raft Recruitment and IL-2 Production. Journal of Immunology, 2004, 173, 6151-6160.	0.4	228
5	Dietary (n-3) Polyunsaturated Fatty Acids Suppress Murine Lymphoproliferation, Interleukin-2 Secretion, and the Formation of Diacylglycerol and Ceramide , ,. Journal of Nutrition, 1997, 127, 37-43.	1.3	212
6	Dietary (n-3) Polyunsaturated Fatty Acids Remodel Mouse T-Cell Lipid Rafts. Journal of Nutrition, 2003, 133, 1913-1920.	1.3	196
7	?3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. Journal of Nutritional Biochemistry, 2004, 15, 700-706.	1.9	166
8	Persistence and Protective Efficacy of a <i>Mycobacterium tuberculosis</i> Auxotroph Vaccine. Infection and Immunity, 1999, 67, 2867-2873.	1.0	154
9	Role of the <i>dosR</i> - <i>dosS</i> Two-Component Regulatory System in <i>Mycobacterium tuberculosis</i> Virulence in Three Animal Models. Infection and Immunity, 2009, 77, 1230-1237.	1.0	150
10	n-3 Polyunsaturated Fatty Acids Suppress the Localization and Activation of Signaling Proteins at the Immunological Synapse in Murine CD4+ T Cells by Affecting Lipid Raft Formation. Journal of Immunology, 2008, 181, 6236-6243.	0.4	149
11	Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharmaceutical Research, 2001, 18, 1315-1319.	1.7	144
12	Tuberculosis vaccine development: recent progress. Trends in Microbiology, 2001, 9, 115-118.	3.5	141
13	The guinea pig as a model of infectious diseases. Comparative Medicine, 2008, 58, 324-40.	0.4	141
14	Immunomodulatory Effects of (n-3) Fatty Acids: Putative Link to Inflammation and Colon Cancer ,. Journal of Nutrition, 2007, 137, 200S-204S.	1.3	140
15	Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Progress in Lipid Research, 2010, 49, 250-261.	5.3	131
16	Disease model: pulmonary tuberculosis. Trends in Molecular Medicine, 2001, 7, 135-137.	3.5	130
17	Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. International Immunology, 2003, 15, 915-925.	1.8	126
18	Reduced Colitis-Associated Colon Cancer in <i>Fat-1</i> (<i>n</i> -3 Fatty Acid Desaturase) Transgenic Mice. Cancer Research, 2008, 68, 3985-3991.	0.4	124

#	Article	IF	CITATIONS
19	Colon cancer, fatty acids and anti-inflammatory compounds. Current Opinion in Gastroenterology, 2007, 23, 48-54.	1.0	112
20	Bioactive dietary long-chain fatty acids: emerging mechanisms of action. British Journal of Nutrition, 2008, 100, 1152-1157.	1.2	110
21	Intranasal Mucosal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances the Protection of BCG-Primed Guinea Pigs against Pulmonary Tuberculosis. PLoS ONE, 2009, 4, e5856.	1.1	104
22	Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chemistry and Physics of Lipids, 2008, 153, 14-23.	1.5	100
23	The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis, 2008, 88, 187-196.	0.8	97
24	Altered Cytokine Production and Impaired Antimycobacterial Immunity in Protein-Malnourished Guinea Pigs. Infection and Immunity, 1998, 66, 3562-3568.	1.0	90
25	Dietary (n-3) Polyunsaturated Fatty Acids Modulate Murine Th1/Th2 Balance toward the Th2 Pole by Suppression of Th1 Development. Journal of Nutrition, 2005, 135, 1745-1751.	1.3	89
26	Stable Transfection of the BovineNRAMP1 Gene into Murine RAW264.7 Cells: Effect onBrucella abortus Survival. Infection and Immunity, 2001, 69, 3110-3119.	1.0	88
27	The effects of malnutrition on secretory and cellular immune processes. Critical Reviews in Food Science and Nutrition, 1979, 12, 113-159.	1.3	85
28	Dietary n-3 Polyunsaturated Fatty Acids (PUFA) Decrease Obesity-Associated Th17 Cell-Mediated Inflammation during Colitis. PLoS ONE, 2012, 7, e49739.	1.1	78
29	Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis, 2011, 91, 329-338.	0.8	77
30	Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host–pathogen interface in secondary tubercles. Tuberculosis, 2003, 83, 131-134.	0.8	75
31	Omega-3 fatty acids, lipid rafts, and T cell signaling. European Journal of Pharmacology, 2016, 785, 2-9.	1.7	74
32	Guinea Pig Model of Tuberculosis. , 0, , 135-147.		74
33	Nutrition and the Immune System. Journal of the American Dietetic Association, 1996, 96, 1156-1164.	1.3	72
34	Current status of TB vaccines. Vaccine, 2007, 25, 3742-3751.	1.7	69
35	Micronutrient Status and Immune Function in Tuberculosisa. Annals of the New York Academy of Sciences, 1990, 587, 59-69.	1.8	66
36	Rapid Accumulation of Eosinophils in Lung Lesions in Guinea Pigs Infected with Mycobacterium tuberculosis. Infection and Immunity, 2004, 72, 1147-1149.	1.0	66

#	Article	IF	CITATIONS
37	Coordinate Cytokine Gene Expression In Vivo following Induction of Tuberculous Pleurisy in Guinea Pigs. Infection and Immunity, 2003, 71, 4271-4277.	1.0	64
38	Dietary n-3 polyunsaturated fatty acids promote activation-induced cell death in Th1-polarized murine CD4+ T-cells. Journal of Lipid Research, 2004, 45, 1482-1492.	2.0	61
39	n-3 Polyunsaturated fatty acids—Physiological relevance of dose. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 155-158.	1.0	61
40	Dietary Fish Oil Inhibits Antigen-Specific Murine Th1 Cell Development by Suppression of Clonal Expansion. Journal of Nutrition, 2006, 136, 2391-2398.	1.3	60
41	Th17 Cell Accumulation Is Decreased during Chronic Experimental Colitis by (n-3) PUFA in Fat-1 Mice3. Journal of Nutrition, 2012, 142, 117-124.	1.3	60
42	Docosahexaenoic Acid Suppresses Function of the CD28 Costimulatory Membrane Receptor in Primary Murine and Jurkat T Cells. Journal of Nutrition, 2001, 131, 1147-1153.	1.3	58
43	Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) Protein during Incipient and Clinical Tuberculosis. Infection and Immunity, 2005, 73, 5004-5014.	1.0	57
44	Pulmonary Immunization Using Antigen 85-B Polymeric Microparticles to Boost Tuberculosis Immunity. AAPS Journal, 2010, 12, 338-347.	2.2	54
45	Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice. British Journal of Nutrition, 2011, 106, 519-529.	1.2	54
46	Recombinant Guinea Pig Tumor Necrosis Factor Alpha Stimulates the Expression of Interleukin-12 and the Inhibition of Mycobacterium tuberculosis Growth in Macrophages. Infection and Immunity, 2005, 73, 1367-1376.	1.0	53
47	Lymphadenitis as a major element of disease in the guinea pig model of tuberculosis. Tuberculosis, 2006, 86, 386-394.	0.8	53
48	n3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells. Journal of Nutrition, 2013, 143, 1501-1508.	1.3	52
49	(n-3) Polyunsaturated Fatty Acids Promote Activation-Induced Cell Death in Murine T Lymphocytes. Journal of Nutrition, 2003, 133, 496-503.	1.3	51
50	Cytokine Profiles in Primary and Secondary Pulmonary Granulomas of Guinea Pigs with Tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 455-462.	1.4	51
51	Magnetic Resonance Imaging of Pulmonary Lesions in Guinea Pigs Infected with Mycobacterium tuberculosis. Infection and Immunity, 2004, 72, 5963-5971.	1.0	50
52	Poly (Lactide-co-Glycolide) Microspheres in Respirable Sizes Enhance an In Vitro T Cell Response to Recombinant Mycobacterium tuberculosis Antigen 85B. Pharmaceutical Research, 2007, 24, 1834-1843.	1.7	50
53	Examination of Mycobacterium tuberculosis sigma factor mutants using low-dose aerosol infection of guinea pigs suggests a role for SigC in pathogenesis. Microbiology (United Kingdom), 2006, 152, 1591-1600.	0.7	49
54	Tuberculosis: vaccines in the pipeline. Expert Review of Vaccines, 2008, 7, 635-650.	2.0	48

#	Article	IF	CITATIONS
55	Microdissection of the cytokine milieu of pulmonary granulomas from tuberculous guinea pigs. Cellular Microbiology, 2007, 9, 1127-1136.	1.1	47
56	Dietary Curcumin and Limonin Suppress CD4+ T-Cell Proliferation and Interleukin-2 Production in Mice. Journal of Nutrition, 2009, 139, 1042-1048.	1.3	47
57	Recent progress in the development and testing of vaccines against human tuberculosis. International Journal for Parasitology, 2003, 33, 547-554.	1.3	46
58	Pathologic findings and association ofMycobacterium bovisinfection with the bovineNRAMP1gene in cattle from herds with naturally occurring tuberculosis. American Journal of Veterinary Research, 2000, 61, 1140-1144.	0.3	45
59	Guinea Pig Neutrophils Infected with Mycobacterium tuberculosis Produce Cytokines Which Activate Alveolar Macrophages in Noncontact Cultures. Infection and Immunity, 2007, 75, 1870-1877.	1.0	45
60	n-3 Polyunsaturated Fatty Acids Suppress Mitochondrial Translocation to the Immunologic Synapse and Modulate Calcium Signaling in T Cells. Journal of Immunology, 2010, 184, 5865-5873.	0.4	45
61	Influence of Malnutrition on the Concentration of IgA, Lysozyme, Amylase, and Aminopeptidase in Children's Tears. Experimental Biology and Medicine, 1978, 157, 215-219.	1.1	44
62	Evaluating the role of tumor necrosis factor-alpha in experimental pulmonary tuberculosis in the guinea pig. Tuberculosis, 2005, 85, 245-258.	0.8	44
63	Incorporation of a Dietary Omega 3 Fatty Acid Impairs Murine Macrophage Responses to Mycobacterium tuberculosis. PLoS ONE, 2010, 5, e10878.	1.1	44
64	Transgenic Mice Enriched in Omegaâ€3 Fatty Acids Are More Susceptible to Pulmonary Tuberculosis: Impaired Resistance to Tuberculosis in <i>fatâ€1 </i> Mice. Journal of Infectious Diseases, 2010, 201, 399-408.	1.9	44
65	n–3 PUFAs Reduce T-Helper 17 Cell Differentiation by Decreasing Responsiveness to Interleukin-6 in Isolated Mouse Splenic CD4+ T Cells. Journal of Nutrition, 2014, 144, 1306-1313.	1.3	44
66	Immunosuppression and Alteration of Resistance to Pulmonary Tuberculosis in Guinea Pigs by Protein Undernutrition ,. Journal of Nutrition, 1992, 122, 738-743.	1.3	43
67	Evaluation of a novel vaccine (HVJ–liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine, 2007, 25, 2990-2993.	1.7	43
68	Dietary Polyunsaturated Fatty Acids Modulate Resistance to Mycobacterium tuberculosis in Guinea Pigs. Journal of Nutrition, 2008, 138, 2123-2128.	1.3	42
69	Interleukin (IL)-8 (CXCL8) induces cytokine expression and superoxide formation by guinea pig neutrophils infected with Mycobacterium tuberculosis. Tuberculosis, 2004, 84, 283-292.	0.8	41
70	The influence of dietary protein on the protective effect of BCG in guinea pigs. Tubercle, 1986, 67, 31-39.	0.7	40
71	Mycobacterium bovis BCG Vaccination Augments Interleukin-8 mRNA Expression and Protein Production in Guinea Pig Alveolar Macrophages Infected with Mycobacterium tuberculosis. Infection and Immunity, 2002, 70, 5471-5478.	1.0	40
72	Purified dietary n â^' 3 polyunsaturated fatty acids alter diacylglycerol mass and molecular species composition in concanavalin A-stimulated murine splenocytes. Lipids and Lipid Metabolism, 1993, 1210, 89-96.	2.6	39

#	Article	IF	CITATIONS
73	nâ^'3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation. Biochemical Journal, 2012, 443, 27-37.	1.7	38
74	Protein Deficiency Induces Alterations in the Distribution of T-Cell Subsets in Experimental Pulmonary Tuberculosis. Infection and Immunity, 1998, 66, 927-931.	1.0	38
75	Determinants of Vaccine-Induced Resistance in Animal Models of Pulmonary Tuberculosis. Scandinavian Journal of Infectious Diseases, 2001, 33, 175-178.	1.5	37
76	Effects of dietary nâ^'3 polyunsaturated fatty acids on T-Cell membrane composition and function. Lipids, 2004, 39, 1163-1170.	0.7	35
77	Effect of Neutralizing Transforming Growth Factor β1 on the Immune Response against Mycobacterium tuberculosis in Guinea Pigs. Infection and Immunity, 2004, 72, 1358-1363.	1.0	34
78	Impact of Nutritional Deficiencies on Resistance to Experimental Pulmonary Tuberculosis. Nutrition Reviews, 1998, 56, S147-S152.	2.6	34
79	Remodelling of primary human CD4 ⁺ T cell plasma membrane order by <i>n</i> -3 PUFA. British Journal of Nutrition, 2018, 119, 163-175.	1.2	34
80	n-3 polyunsaturated fatty acids suppress CD4+ T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 85-96.	1.4	32
81	Effect of Mycobacterium bovis BCG Vaccination on Interleukin-1Î ² and RANTES mRNA Expression in Guinea Pig Cells Exposed to Attenuated and Virulent Mycobacteria. Infection and Immunity, 2002, 70, 1245-1253.	1.0	30
82	Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages. Journal of Leukocyte Biology, 2004, 76, 1229-1239.	1.5	30
83	Dietary eicosapentaenoic acid modulates CTLA-4 expression in murine CD4+ T-cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 74, 29-37.	1.0	30
84	Dietary fish oil and DHA down-regulate antigen-activated CD4+T-cells while promoting the formation of liquid-ordered mesodomains. British Journal of Nutrition, 2014, 111, 254-260.	1.2	29
85	Differential Expression of Gamma Interferon mRNA Induced by Attenuated and Virulent Mycobacterium tuberculosis in Guinea Pig Cells after Mycobacterium bovis BCG Vaccination. Infection and Immunity, 2003, 71, 354-364.	1.0	27
86	nâ^'3 Fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization. Chemistry and Physics of Lipids, 2011, 164, 626-635.	1.5	27
87	Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity. Mediators of Inflammation, 2014, 2014, 1-14.	1.4	27
88	Multiplexed Nucleic Acid Programmable Protein Arrays. Theranostics, 2017, 7, 4057-4070.	4.6	25
89	Altered inflammatory responses following transforming growth factor- \hat{I}^2 neutralization in experimental guinea pig tuberculous pleurisy. Tuberculosis, 2008, 88, 430-436.	0.8	22
90	Immunomodulatory action of dietary fish oil and targeted deletion of intestinal epithelial cell PPARδin inflammation-induced colon carcinogenesis. American Journal of Physiology - Renal Physiology, 2012, 302. G153-G167.	1.6	22

#	Article	IF	CITATIONS
91	Distinct Adipose Depots from Mice Differentially Respond to a High-Fat, High-Salt Diet. Journal of Nutrition, 2016, 146, 1189-1196.	1.3	22
92	Effect of Mycobacterium bovis BCG Vaccinationon Mycobacterium-Specific Cellular Proliferation and TumorNecrosis Factor Alpha Production from Distinct Guinea PigLeukocytePopulations. Infection and Immunity, 2003, 71, 7035-7042.	1.0	21
93	Mycobacterium bovis BCG vaccination modulates TNF- $\hat{l}\pm$ production after pulmonary challenge with virulent Mycobacterium tuberculosis in guinea pigs. Tuberculosis, 2007, 87, 155-165.	0.8	21
94	Altered cellular infiltration and cytokine levels during early Mycobacterium tuberculosis sigC mutant infection are associated with late-stage disease attenuation and milder immunopathology in mice. BMC Microbiology, 2008, 8, 151.	1.3	20
95	Diacylglycerol and ceramide kinetics in primary cultures of activated T-lymphocytes. Immunology Letters, 1996, 49, 43-48.	1.1	19
96	Effect of malnutrition and BCG vaccination on macrophage activation in guinea pigs. Nutrition Research, 1981, 1, 373-384.	1.3	17
97	Immune Responses in Malnourished Guinea Pigs. Journal of Nutrition, 1982, 112, 167-174.	1.3	17
98	Isolation of Sporothrix schenckii from potting soil. Mycopathologia, 1984, 87, 128-128.	1.3	17
99	Cloning and characterization of guinea pig CXCR1. Molecular Immunology, 2007, 44, 878-888.	1.0	17
100	Neutralization of TNFÎ \pm alters inflammation in guinea pig tuberculous pleuritis. Microbes and Infection, 2009, 11, 680-688.	1.0	17
101	Guinea pig neutrophil–macrophage interactions during infection with Mycobacterium tuberculosis. Microbes and Infection, 2010, 12, 828-837.	1.0	17
102	Neutralization of Tumor Necrosis Factor Alpha Suppresses Antigen-Specific Type 1 Cytokine Responses and Reverses the Inhibition of Mycobacterial Survival in Cocultures of Immune Guinea Pig T Lymphocytes and Infected Macrophages. Infection and Immunity, 2005, 73, 8437-8441.	1.0	16
103	Recombinant guinea pig TNF-α enhances antigen-specific type 1 T lymphocyte activation in guinea pig splenocytes. Tuberculosis, 2007, 87, 87-93.	0.8	15
104	The Impact of Mouse Passaging of Mycobacterium tuberculosis Strains prior to Virulence Testing in the Mouse and Guinea Pig Aerosol Models. PLoS ONE, 2010, 5, e10289.	1.1	15
105	Cloning of guinea pig IL-4: Reduced IL-4 mRNA after vaccination or Mycobacterium tuberculosis infection. Tuberculosis, 2011, 91, 47-56.	0.8	15
106	Immunogenicity of an Electron Beam Inactivated Rhodococcus equi Vaccine in Neonatal Foals. PLoS ONE, 2014, 9, e105367.	1.1	15
107	BCG vaccination of guinea pigs modulates Mycobacterium tuberculosis-induced CCL5 (RANTES) production in vitro and in vivo. Tuberculosis, 2006, 86, 419-429.	0.8	14
108	Ultraviolet radiation reduces resistance to Mycobacterium tuberculosis infection in BCG-vaccinated guinea pigs. Tuberculosis, 2009, 89, 431-438.	0.8	13

#	Article	IF	CITATIONS
109	Novel Prophylactic Vaccine Using a Prime-Boost Method and Hemagglutinating Virus of Japan-Envelope against Tuberculosis. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	12
110	Differential effect of protein and zinc deficiencies on lymphokine activity in BCG-vaccinated guinea pigs. Nutrition Research, 1985, 5, 959-968.	1.3	11
111	Adoptive transfer of resistance to pulmonary tuberculosis in guinea pigs is altered by protein deficiency. Nutrition Research, 1998, 18, 309-317.	1.3	11
112	Short Communication: A New Assay System for Guinea Pig Interferon Biological Activity. Journal of Interferon and Cytokine Research, 2002, 22, 793-797.	0.5	11
113	AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophysical Journal, 2020, 118, 885-897.	0.2	11
114	fat-1 transgene expression prevents cell culture-induced loss of membrane n-3 fatty acids in activated CD4+ T-cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 79, 209-214.	1.0	10
115	Molecular cloning and expression of the IL-10 gene from guinea pigs. Gene, 2012, 498, 120-127.	1.0	10
116	Molecular Cloning, Expression, and In Silico Structural Analysis of Guinea Pig IL-17. Molecular Biotechnology, 2013, 55, 277-287.	1.3	10
117	Tuberculosis: Vaccine and drug development. Tuberculosis, 2007, 87, S10-S13.	0.8	9
118	Chemotherapeutic Properties of n-3 Polyunsaturated Fatty Acids - Old Concepts and New Insights. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 38-44.	0.5	9
119	Dietary n-3 Polyunsaturated Fatty Acids Modulate T-Lymphocyte Activation. , 2000, , 121-134.		9
120	Effect of protein and zinc deficiencies on vaccine efficacy in guinea pigs following pulmonary infection with Listeria. Medical Microbiology and Immunology, 1988, 177, 255-63.	2.6	7
121	Vaccination with Bacille almette Guérin Promotes Mycobacterial Control in Guinea Pig Macrophages Infected In Vivo. Journal of Infectious Diseases, 2008, 198, 768-771.	1.9	6
122	Effect of dietary protein and zinc on anti-mycobacterial antibody responses in guinea pigs. Nutrition Research, 1986, 6, 167-179.	1.3	5
123	Differential activation of alveolar and peritoneal macrophages from BCG-vaccinated guinea pigs. Tuberculosis, 2008, 88, 307-316.	0.8	5
124	Prokaryotic Expression and In Vitro Functional Analysis of IL-1β and MCP-1 from Guinea Pig. Molecular Biotechnology, 2013, 54, 312-319.	1.3	5
125	Isolation of pathogenic Aspergillus species from commercially-prepared potting media. Mycopathologia, 1984, 87, 171-173.	1.3	3
126	Nutritional Determinants of Resistance to Tuberculosis. Journal of Nutritional Immunology, 1997, 5, 3-10.	0.1	3

#	Article	IF	CITATIONS
127	TB vaccines: the paradigms they are a-shifting. Expert Review of Vaccines, 2009, 8, 1615-1618.	2.0	2
128	Do new TB vaccines have a place in the Expanded Program on Immunization?. Expert Review of Vaccines, 2011, 10, 1675-1677.	2.0	2
129	Molecular and Biochemical Characterization of Recombinant Guinea Pig Tumor Necrosis Factor-Alpha. Mediators of Inflammation, 2015, 2015, 1-7.	1.4	2
130	Exquisite Scientific Writing The Scientist's Handbook for Writing Papers and Dissertations Antoinette M. Wilkinson. BioScience, 1992, 42, 209-210.	2.2	1
131	Clinical Effects of n-3 PUFA Supplementation in Human Health and Inflammatory Diseases. , 2011, , 31-60.		1
132	Determinants of Vaccine-Induced Resistance in Animal Models of Pulmonary Tuberculosis. Scandinavian Journal of Infectious Diseases, 2001, 33, 70-73.	1.5	0
133	Nutrition and Susceptibility to Tuberculosis â~†. , 2017, , .		Ο
134	Protein Malnutrition Exacerbates Suppression of Lymphoproliferation by Guinea Pig Alveolar Macrophages. Journal of Nutritional Immunology, 2002, 5, 37-54.	0.1	0
135	Local and Systemic T Cell Responses to Purified Proteins Following Cow's Milk Feeding in Guinea Pigs. Journal of Nutritional Immunology, 2002, 5, 55-69.	0.1	0
136	Dietary fish oil alters the accumulation of antigenâ€specific CD4 ⁺ T cells in the lymph nodes of recipient mice following adoptive transfer and immunization. FASEB Journal, 2006, 20, .	0.2	0
137	nâ€3 Polyunsaturated Fatty Acids Suppress Tâ€Cell Mitochondrial Translocation to the Immunological Svnapse. FASEB Journal, 2009, 23, 910.20.	0.2	0