Ryutaro Fukui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11610275/publications.pdf

Version: 2024-02-01

430442 433756 34 1,842 18 31 citations h-index g-index papers 35 35 35 2587 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Skewed endosomal RNA responses from TLR7 to TLR3 in RNase T2-deficient macrophages. International Immunology, 2021, 33, 479-490.	1.8	9
2	Dynamic control of nucleic-acid-sensing Toll-like receptors by the endosomal compartment. International Immunology, 2021, 33, 835-840.	1.8	3
3	Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nature Communications, 2021, 12, 5874.	5.8	21
4	Anti-TLR7 Antibody Protects Against Lupus Nephritis in NZBWF1 Mice by Targeting B Cells and Patrolling Monocytes. Frontiers in Immunology, 2021, 12, 777197.	2.2	21
5	The impact of cell maturation and tissue microenvironments on the expression of endosomal Toll-like receptors in monocytes and macrophages. International Immunology, 2020, 32, 785-798.	1.8	14
6	Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. Journal of Leukocyte Biology, 2019, 106, 853-862.	1.5	9
7	Cytidine deaminase enables Toll-like receptor 8 activation by cytidine or its analogs. International Immunology, 2019, 31, 167-173.	1.8	9
8	Mechanisms controlling nucleic acid-sensing Toll-like receptors. International Immunology, 2018, 30, 43-51.	1.8	85
9	Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nature Immunology, 2018, 19, 1071-1082.	7.0	52
10	Cleavage of Toll-Like Receptor 9 Ectodomain Is Required for In Vivo Responses to Single Strand DNA. Frontiers in Immunology, 2018, 9, 1491.	2.2	12
11	New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflammation and Regeneration, 2018, 38, 11.	1.5	7
12	Selectivity of Human TLR9 for Double CpG Motifs and Implications for the Recognition of Genomic DNA. Journal of Immunology, 2017, 198, 2093-2104.	0.4	39
13	The protective effect of the anti-Toll-like receptor 9 antibody against acute cytokine storm caused by immunostimulatory DNA. Scientific Reports, 2017, 7, 44042.	1.6	21
14	C4bâ€binding protein negatively regulates <scp>TLR</scp> 4/ <scp>MD</scp> â€2 response but not <scp>TLR</scp> 3 response. FEBS Letters, 2017, 591, 1732-1741.	1.3	5
15	TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nature Communications, 2017, 8, 1592.	5.8	70
16	Homeostatic Inflammation as Environmental-Adaptation Strategy. , 2016, , 25-52.		0
17	Type I IFN Contributes to the Phenotype of Unc93b1D34A/D34A Mice by Regulating TLR7 Expression in B Cells and Dendritic Cells. Journal of Immunology, 2016, 196, 416-427.	0.4	5
18	Guanosine and its modified derivatives are endogenous ligands for TLR7. International Immunology, 2016, 28, 211-222.	1.8	97

#	Article	IF	Citations
19	Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nature Communications, 2015, 6, 6119.	5.8	71
20	Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes. International Immunology, 2015, 27, 83-94.	1.8	19
21	DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nature Communications, 2015, 6, 5853.	5.8	107
22	Species-Specific Minimal Sequence Motif for Oligodeoxyribonucleotides Activating Mouse TLR9. Journal of Immunology, 2015, 195, 4396-4405.	0.4	43
23	UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7072-7077.	3.3	62
24	Roles of the Cleaved N-Terminal TLR3 Fragment and Cell Surface TLR3 in Double-Stranded RNA Sensing. Journal of Immunology, 2014, 193, 5208-5217.	0.4	46
25	An essential role for the N-terminal fragment of Toll-like receptor 9 in DNA sensing. Nature Communications, 2013, 4, 1949.	5.8	74
26	Double-Stranded RNA of Intestinal Commensal but Not Pathogenic Bacteria Triggers Production of Protective Interferon-β. Immunity, 2013, 38, 1187-1197.	6.6	176
27	Essential role for Toll-like receptor 7 (TLR7)-unique cysteines in an intramolecular disulfide bond, proteolytic cleavage and RNA sensing. International Immunology, 2013, 25, 413-422.	1.8	39
28	Unc93 homolog B1 restricts systemic lethal inflammation by orchestrating TLR7 and TLR9 response. Arthritis Research and Therapy, 2012, 14, .	1.6	0
29	Controlling systems of nucleic acid sensing-TLRs restrict homeostatic inflammation. Experimental Cell Research, 2012, 318, 1461-1466.	1.2	11
30	Bortezomib suppresses function and survival of plasmacytoid dendritic cells by targeting intracellular trafficking of Toll-like receptors and endoplasmic reticulum homeostasis. Blood, 2011, 117, 500-509.	0.6	73
31	Unc93B1 Restricts Systemic Lethal Inflammation by Orchestrating Toll-like Receptor 7 and 9 Trafficking. Immunity, 2011, 35, 69-81.	6.6	180
32	Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. Journal of Experimental Medicine, 2009, 206, 1339-1350.	4.2	285
33	A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. Journal of Experimental Medicine, 2007, 204, 2963-2976.	4.2	162
34	Nucleic Acid Sensing by Toll-Like Receptors in the Endosomal Compartment. Frontiers in Immunology, 0, 13, .	2.2	10