Julian F V Vincent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11609284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E2BMO: Facilitating User Interaction with a BioMimetic Ontology via Semantic Translation and Interface Design. Designs, 2018, 2, 53.	1.3	10
2	Towards Identifying Biological Research Articles in Computer-Aided Biomimetics. Lecture Notes in Computer Science, 2017, , 242-254.	1.0	3
3	An Ontology of Biomimetics. , 2014, , 269-285.		18
4	Unusual uses of holes—With input from biology. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 682-687.	1.5	4
5	Biomimetics of Skins. , 2009, , 3-15.		2
6	Biomimetics of campaniform sensilla: Measuring strain from the deformation of holes. Journal of Bionic Engineering, 2007, 4, 63-76.	2.7	35
7	Biomimetics: its practice and theory. Journal of the Royal Society Interface, 2006, 3, 471-482.	1.5	790
8	Making a mechanical organism. Journal of Bionic Engineering, 2006, 3, 43-58.	2.7	9
9	Applications — some influences of engineering ideas on biology. Journal of Bionic Engineering, 2006, 3, 99-114.	2.7	2
10	Applications — influence of biology on engineering. Journal of Bionic Engineering, 2006, 3, 161-177.	2.7	17
11	Rolling in nature and robotics: A review. Journal of Bionic Engineering, 2006, 3, 195-208.	2.7	167
12	The materials revolution. Journal of Bionic Engineering, 2006, 3, 217-234.	2.7	13
13	Drag reduction in a swimming humboldt penguin, Spheniscus humboldti, when the boundary layer is turbulent. Journal of Bionic Engineering, 2005, 2, 57-62.	2.7	12
14	Deconstructing the design of a biological material. Journal of Theoretical Biology, 2005, 236, 73-78.	0.8	36
15	A biomimetic approach to robot locomotion in unstructured and slippery environments. Journal of Bionic Engineering, 2005, 2, 1-14.	2.7	4
16	The nature of materials. Journal of Bionic Engineering, 2005, 2, 93-113.	2.7	6
17	Making biological materials. Journal of Bionic Engineering, 2005, 2, 209-237.	2.7	11
18	Selected natural materials in history. Journal of Bionic Engineering, 2005, 2, 161-176.	2.7	4

2

JULIAN FV VINCENT

#	Article	IF	CITATIONS
19	Dynamics of Drying in Phenolically Tanned Materials. Journal of Bionic Engineering, 2004, 1, 4-8.	2.7	12
20	Solving materials design problems in biology and technology – a case study. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	0
21	Design and mechanical properties of insect cuticle. Arthropod Structure and Development, 2004, 33, 187-199.	0.8	860
22	Biomimetic modelling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1597-1603.	1.8	34
23	Natural Engineering — The Smart Synergy. , 2003, , 249-271.		0
24	Systematic technology transfer from biology to engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 159-173.	1.6	215
25	Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zoological Journal of the Linnean Society, 1998, 124, 387-396.	1.0	116
26	The quantification of crispness. Journal of the Science of Food and Agriculture, 1998, 78, 162-168.	1.7	160
27	How pine cones open. Nature, 1997, 390, 668-668.	13.7	487
28	HERBIVORY AND THE MECHANICS OF FRACTURE IN PLANTS. Biological Reviews, 1996, 71, 401-413.	4.7	78
29	Poisson's Ratio in Skin. Bio-Medical Materials and Engineering, 1991, 1, 19-23.	0.4	101
30	Anisotropy and Simple mechanics of the Flesh of Apples Materials Research Society Symposia Proceedings, 1990, 207, 61.	0.1	0
31	Fracture Properties of an Anisotropic Biological Cellular Material - Apple Flesh. Materials Research Society Symposia Proceedings, 1990, 207, 65.	0.1	0
32	Parallel Fibres Control Fracture in Biological Systems. Materials Research Society Symposia Proceedings, 1990, 218, 221.	0.1	1
33	Anisotropy of apple parenchyma. Journal of the Science of Food and Agriculture, 1990, 52, 455-466.	1.7	112
34	Measuring the forces acting during microtomy by the use of load cells. Journal of Microscopy, 1990, 159, 203-210.	0.8	10
35	Relationship between density and stiffness of apple flesh. Journal of the Science of Food and Agriculture, 1989, 47, 443-462.	1.7	94
36	Some novel fieldwork experiments. Journal of Biological Education, 1988, 22, 220-224.	0.8	0

JULIAN FV VINCENT

#	Article	IF	CITATIONS
37	Composite theory and the effect of water on the stiffness of horn keratin. Journal of Materials Science, 1987, 22, 1385-1389.	1.7	63
38	The mechanical design of kelp,Laminaria digitata. Journal of Materials Science Letters, 1986, 5, 353-354.	0.5	10
39	The influence of water content on the stiffness and fracture properties of grass leaves. Grass and Forage Science, 1983, 38, 107-114.	1.2	67
40	The mechanical design of grass. Journal of Materials Science, 1982, 17, 856-860.	1.7	160