
Pritam Thapa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11608507/publications.pdf Version: 2024-02-01

ΟσιτλΜ Τηλολ

#	Article	IF	CITATIONS
1	Retinoic acid signaling pathways in development and diseases. Bioorganic and Medicinal Chemistry, 2014, 22, 673-683.	3.0	202
2	Synthesis of 2,6-diaryl-substituted pyridines and their antitumor activities. European Journal of Medicinal Chemistry, 2008, 43, 675-682.	5.5	121
3	2,4,6-Trisubstituted pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship. Bioorganic and Medicinal Chemistry, 2007, 15, 4351-4359.	3.0	120
4	Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 250-257.	4.3	111
5	Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. Journal of Medicinal Chemistry, 2016, 59, 3204-3214.	6.4	103
6	Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Archives of Pharmacal Research, 2010, 33, 417-426.	6.3	95
7	A Series of Novel Terpyridine-Skeleton Molecule Derivants Inhibit Tumor Growth and Metastasis by Targeting Topoisomerases. Journal of Medicinal Chemistry, 2015, 58, 1100-1122.	6.4	93
8	Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorganic and Medicinal Chemistry, 2010, 18, 3066-3077.	3.0	88
9	Dihydroxylated 2,4,6-triphenyl pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study. European Journal of Medicinal Chemistry, 2012, 49, 219-228.	5.5	70
10	2-Thienyl-4-furyl-6-aryl pyridine derivatives: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study. Bioorganic and Medicinal Chemistry, 2010, 18, 377-386.	3.0	60
11	Design, synthesis, and antitumor evaluation of 2,4,6-triaryl pyridines containing chlorophenyl and phenolic moiety. European Journal of Medicinal Chemistry, 2012, 52, 123-136.	5.5	58
12	Synthesis of 2,4-diaryl chromenopyridines and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship. European Journal of Medicinal Chemistry, 2011, 46, 3201-3209.	5.5	50
13	2,6-Dithienyl-4-furyl pyridines: Synthesis, topoisomerase I and II inhibition, cytotoxicity, structure–activity relationship, and docking study. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 42-47.	2.2	45
14	Folate-PEG Conjugates of a Far-Red Light-Activatable Paclitaxel Prodrug to Improve Selectivity toward Folate Receptor-Positive Cancer Cells. ACS Omega, 2017, 2, 6349-6360.	3.5	41
15	Synthesis of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship. Bioorganic and Medicinal Chemistry, 2010, 18, 2245-2254.	3.0	38
16	1-Isoindolinone scaffold-based natural products with a promising diverse bioactivity. Fìtoterapìâ, 2020, 146, 104722.	2.2	37
17	Synthesis, antitumor activity, and structure–activity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors. European Journal of Medicinal Chemistry, 2014, 84, 555-565.	5.5	32
18	Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. European Journal of Medicinal Chemistry, 2014, 80, 428-438.	5.5	29

Pritam Thapa

#	Article	IF	CITATIONS
19	Anticancer drug released from near IR-activated prodrug overcomes spatiotemporal limits of singlet oxygen. Bioorganic and Medicinal Chemistry, 2016, 24, 1540-1549.	3.0	29
20	Synthesis, Topoisomerase I and II Inhibitory Activity, Cytotoxicity, and Structure-activity Relationship Study of Rigid Analogues of 2,4,6-Trisubstituted Pyridine Containing 5,6-Dihydrobenzo[h]quinoline Moiety. Bulletin of the Korean Chemical Society, 2011, 32, 303-306.	1.9	23
21	Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines. Bioorganic and Medicinal Chemistry, 2015, 23, 3499-3512.	3.0	22
22	Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents. Bioorganic and Medicinal Chemistry, 2015, 23, 6454-6466.	3.0	22
23	Efficient activation of a visible light-activatable CA4 prodrug through intermolecular photo-unclick chemistry in mitochondria. Chemical Communications, 2017, 53, 1884-1887.	4.1	21
24	2,4-Diaryl Benzofuro[3,2-b]pyridine Derivatives: Design, Synthesis, and Evaluation of Topoisomerase Inhibitory Activity and Cytotoxicity. Bulletin of the Korean Chemical Society, 2013, 34, 3073-3082.	1.9	21
25	2,4-Diaryl-5,6-dihydro-1,10-phenanthroline and 2,4-diaryl-5,6-dihydrothieno[2,3-h] quinoline derivatives for topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study. Bioorganic Chemistry, 2012, 40, 67-78.	4.1	20
26	Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents. Bioorganic Chemistry, 2016, 66, 145-159.	4.1	11
27	Synthesis, Topoisomerase I and II Inhibitory Activities, and Cytotoxicity of 4,6-Diaryl-2,4'-bipyridine Derivatives. Bulletin of the Korean Chemical Society, 2010, 31, 1747-1750.	1.9	10
28	2,4-Diaryl-5H-chromeno [4,3-b]pyridines: Synthesis, Topoisomerase I and II Inhibitory Activity, and Cytotoxicity. Bulletin of the Korean Chemical Society, 2012, 33, 3103-3106.	1.9	10
29	Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system. Journal of Pharmacokinetics and Pharmacodynamics, 2017, 44, 521-536.	1.8	9
30	2,4-Diaryl-5,6-dihydro-1,10-phenanthrolines with Furyl or Thienyl Moiety at 4-Position: Synthesis, Topoisomerase I and II Inhibitory Activity, and Cytotoxicity. Bulletin of the Korean Chemical Society, 2012, 33, 1769-1772.	1.9	9
31	Identification of a N 7-guanine adduct of 1-bromopropane in calf thymus DNA by mass spectrometry. Molecular and Cellular Toxicology, 2016, 12, 7-14.	1.7	6
32	Influence of ligand geometry on cholinesterase enzyme - A comparison of 1-isoindolinone based structural analog with Donepezil. Journal of Molecular Structure, 2022, 1247, 131385.	3.6	2
33	Depurination of dA and dG Induced by 2-bromopropane at the Physiological Condition. Biomolecules and Therapeutics, 2007, 15, 224-229.	2.4	2