Paola Neri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11608316/publications.pdf

Version: 2024-02-01

		186209	168321
80	2,861	28	53
papers	citations	h-index	g-index
80	80	80	3713
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Aggresome induction by proteasome inhibitor bortezomib and $\hat{l}\pm$ -tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood, 2006, 108, 3441-3449.	0.6	328
2	Role of B-Cell–Activating Factor in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment. Cancer Research, 2006, 66, 6675-6682.	0.4	212
3	Integrin \hat{I}^2 7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood, 2011, 117, 6202-6213.	0.6	134
4	MLN120B, a Novel IκB Kinase β Inhibitor, Blocks Multiple Myeloma Cell Growth In vitro and In vivo. Clinical Cancer Research, 2006, 12, 5887-5894.	3.2	130
5	Bortezomib-induced "BRCAness―sensitizes multiple myeloma cells to PARP inhibitors. Blood, 2011, 118, 6368-6379.	0.6	125
6	Cytotoxic activity of the maytansinoid immunoconjugate B-B4–DM1 against CD138+ multiple myeloma cells. Blood, 2004, 104, 3688-3696.	0.6	122
7	Neutralizing B-Cell–Activating Factor Antibody Improves Survival and Inhibits Osteoclastogenesis in a Severe Combined Immunodeficient Human Multiple Myeloma Model. Clinical Cancer Research, 2007, 13, 5903-5909.	3.2	122
8	A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood, 2005, 106, 713-716.	0.6	115
9	Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood, 2018, 132, 2546-2554.	0.6	110
10	Combination Therapy with Interleukin-6 Receptor Superantagonist Sant7 and Dexamethasone Induces Antitumor Effects in a Novel SCID-hu In vivo Model of Human Multiple Myeloma. Clinical Cancer Research, 2005, 11 , $4251-4258$.	3.2	93
11	Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood, 2021, 137, 232-237.	0.6	90
12	Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biology and Therapy, 2009, 8, 648-653.	1.5	88
13	From Inhibition to Degradation: Targeting the Antiapoptotic Protein Myeloid Cell Leukemia 1 (MCL1). Journal of Medicinal Chemistry, 2019, 62, 5522-5540.	2.9	77
14	In vivo activity of gemcitabine-loaded PEGylated small unilamellar liposomes against pancreatic cancer. Cancer Chemotherapy and Pharmacology, 2009, 64, 1009-1020.	1.1	62
15	Establishment of BCWM.1 cell line for Waldenstr $ ilde{A}$ ¶m's macroglobulinemia with productive in vivo engraftment in SCID-hu mice. Experimental Hematology, 2007, 35, 1366-1375.	0.2	61
16	Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood, 2005, 105, 4470-4476.	0.6	59
17	<i>In vivo</i> antiâ€myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. British Journal of Haematology, 2008, 143, 520-531.	1.2	59
18	p38 mitogenâ€activated protein kinase inhibitor LY2228820 enhances bortezomibâ€induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications. British Journal of Haematology, 2008, 141, 598-606.	1.2	53

#	Article	IF	Citations
19	Localized Surface Plasmon Resonance Detection of Biological Toxins Using Cell Surface Oligosaccharides on Glyco Chips. ACS Applied Materials & Interfaces, 2013, 5, 4173-4180.	4.0	52
20	Targeting of Adhesion Molecules as a Therapeutic Strategy in Multiple Myeloma. Current Cancer Drug Targets, 2012, 12, 776-796.	0.8	46
21	New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma. Clinical Cancer Research, 2016, 22, 5959-5965.	3.2	39
22	A SCID-hu in vivo model of human Waldenstroì^m macroglobulinemia. Blood, 2005, 106, 1341-1345.	0.6	37
23	Revised International Staging System Applied to Real World Multiple Myeloma Patients. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 511-518.	0.2	37
24	Glycochips from Polyanionic Glycopolymers as Tools for Detecting Shiga Toxins. ChemBioChem, 2007, 8, 2117-2124.	1.3	35
25	Genomic instability in multiple myeloma: mechanisms and therapeutic implications. Expert Opinion on Biological Therapy, 2013, 13, S69-S82.	1.4	35
26	Panobinostat for the treatment of multiple myeloma. Expert Opinion on Investigational Drugs, 2012, 21, 733-747.	1.9	34
27	Inhibitory Mechanism of 10-Hydroxy-trans-2-decenoic Acid (Royal Jelly Acid) Against Lipopolysaccharide- and Interferon-l²-Induced Nitric Oxide Production. Inflammation, 2013, 36, 372-378.	1.7	34
28	Combined CCNE1 highâ€level amplification and overexpression is associated with unfavourable outcome in tuboâ€ovarian highâ€grade serous carcinoma. Journal of Pathology: Clinical Research, 2020, 6, 252-262.	1.3	33
29	Inhibitory effect of 10-hydroxy- <i>trans</i> -2-decenoic acid on LPS-induced IL-6 production via reducing ll®B-l¶ expression. Innate Immunity, 2012, 18, 429-437.	1.1	32
30	A nasal vaccine comprising B-subunit derivative of Shiga toxin 2 for cross-protection against Shiga toxin types 1 and 2. Vaccine, 2008, 26, 2092-2099.	1.7	26
31	Neutralizing Activity of Polyvalent Gb ₃ , Gb ₂ and Galactoâ€Trehalose Models against Shiga Toxins. Microbiology and Immunology, 2007, 51, 581-592.	0.7	25
32	Bortezomib-containing regimens (BCR) for the treatment of non-transplant eligible multiple myeloma. Annals of Hematology, 2017, 96, 431-439.	0.8	25
33	XPO1 Inhibition Disrupts Ribosomal Subunits Assembly and Induces Multiple Myeloma (MM) Cell Death. Blood, 2013, 122, 3165-3165.	0.6	25
34	Multivalent <i>Galacto </i> -trehaloses: Design, Synthesis, and Biological Evaluation under the Concept of Carbohydrate Modules. Biomacromolecules, 2009, 10, 1846-1853.	2.6	24
35	Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities. Frontiers in Oncology, 2020, 10, 636.	1.3	24
36	Specific Egg Yolk Immunoglobulin as a New Preventive Approach for Shiga-Toxin-Mediated Diseases. PLoS ONE, 2011, 6, e26526.	1.1	21

#	Article	IF	CITATIONS
37	Inhibition of interferon- \hat{l}^3 -induced nitric oxide production by 10-hydroxy-trans-2-decenoic acid through inhibition of interferon regulatory factor-8 induction. Cellular Immunology, 2012, 273, 73-78.	1.4	19
38	Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in cancer. Science Advances, 2021, 7, eabg6045.	4.7	19
39	In vivo and in vitro cytotoxicity of R-etodolac with dexamethasone in glucocorticoid-resistant multiple myeloma cells. British Journal of Haematology, 2006, 134, 37-44.	1.2	18
40	Monovalent Gb3-/Gb2-Derivatives Conjugated with a Phosphatidyl Residue: A Novel Class of Shiga Toxin-Neutralizing Agent. Biological and Pharmaceutical Bulletin, 2007, 30, 1697-1701.	0.6	17
41	Single chain variable fragment antibodies against Shiga toxins isolated from a human antibody phage display library. Vaccine, 2011, 29, 5340-5346.	1.7	16
42	Mechanism of inhibition of lipopolysaccharide-induced interferon- \hat{l}^2 production by 2-aminopurine. Molecular Immunology, 2012, 52, 299-304.	1.0	16
43	CD86 regulates myeloma cell survival. Blood Advances, 2017, 1, 2307-2319.	2.5	15
44	TH17 Pathway and Associated Pro-Inflammatory Cytokines Promote Immune Dysfunction in Myeloma Blood, 2007, 110, 3517-3517.	0.6	15
45	Protection of mice from Shiga toxin-2 toxemia by mucosal vaccine of Shiga toxin 2B-His with Escherichia coli enterotoxin. Vaccine, 2008, 26, 469-476.	1.7	13
46	Cyclophosphamide, Bortezomib and Dexamethasone (CyBorD) for the Treatment of Newly Diagnosed AL Amyloidosis: Impact of Response on Survival Outcomes. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 394-399.	0.2	11
47	Slow lenalidomide desensitization protocol for patients with multiple myeloma: case series from a single center. Leukemia and Lymphoma, 2019, 60, 3199-3203.	0.6	9
48	Cereblon Splicing of Exon 10 Mediates IMiDs Resistance in Multiple Myeloma: Clinical Validation in the CoMMpass Trial. Blood, 2016, 128, 120-120.	0.6	9
49	High Cereblon Protein Expression Correlates with Improved Response and Survival in Myeloma Patients Treated with Lenalidomide. Blood, 2012, 120, 931-931.	0.6	8
50	Bortezomib and melphalan conditioning increases the rate of complete response and MRD negativity for patients with multiple myeloma undergoing single autologous stem cell transplant. Leukemia and Lymphoma, 2016, 57, 973-976.	0.6	6
51	Early Relapse for Multiple Myeloma Patients Undergoing Single Autologous Stem Cell Therapy: A Single-center Experience. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, e69-e75.	0.2	6
52	Recombinant Shiga Toxin B Subunit Can Induce Neutralizing Immunoglobulin Y Antibody. Biological and Pharmaceutical Bulletin, 2012, 35, 917-923.	0.6	5
53	Co-existent B-cell and plasma cell neoplasms: a case series providing novel clinical insight. Leukemia and Lymphoma, 2016, 57, 557-562.	0.6	5
54	Bortezomib maintenance for the treatment of Monoclonal Gammopathy of Renal Significance. Mediterranean Journal of Hematology and Infectious Diseases, 2019, 11, e2019007.	0.5	5

#	Article	IF	CITATIONS
55	The impact of COVIDâ€19 in the management of AL amyloidosis and Immunoglobulin Deposition Disease: A singleâ€center experience. European Journal of Haematology, 2021, 106, 340-345.	1.1	5
56	Establishment of a Waldenstrom's Macroglobulinemia Cell Line (BCWM.1) with Productive In Vivo Engraftment in SCID-hu Mice Blood, 2005, 106, 979-979.	0.6	5
57	N-Terminal pro-brain natriuretic peptide (NTproBNP) in patients with symptomatic multiple myeloma: report from a single institution. Annals of Hematology, 2021, 100, 2521-2527.	0.8	3
58	The Pandora's box of thalidomide analogs and their substrates. Blood, 2019, 134, 105-106.	0.6	2
59	Antiâ€myeloma potential of ruxolitinib in coâ€existing JAK2V617F â€positive smouldering myeloma and polycythaemia vera. British Journal of Haematology, 2020, 189, e114-e118.	1.2	2
60	A miRNA Risk Score for the Prediction of Response to Lenalidomide in Multiple Myeloma (MM) Patients. Blood, 2011, 118, 987-987.	0.6	2
61	Expression and Modulation of Carbohydrate-Binding Protein Galectin-3 in Multiple Myeloma Cells by Combined Treatment with GCS-100 and Dexamethasone Blood, 2005, 106, 4447-4447.	0.6	1
62	Lenalidomide Suppresses 5′-Cap-Independent C-MYC Translation in Multiple Myeloma Cells. Blood, 2012, 120, 3943-3943.	0.6	1
63	Novel Model To Evaluate Changes in Gene Expression Profile of Myeloma Cells In Vivo Following Interaction with Human BM Microenvironment Blood, 2005, 106, 2490-2490.	0.6	1
64	Novel Hydroxamic Acid-Derived HDAC Inhibitor LBH589 Potently Activates Intrinsic and Extrinsic Apoptotic Pathways, and Induces Tubulin Hyperacetylation in Multiple Myeloma Blood, 2005, 106, 1578-1578.	0.6	1
65	Dysfunctional T Regulatory Cells in Myeloma: Molecular Mechanisms of Dysregulation Blood, 2005, 106, 3462-3462.	0.6	1
66	Outcomes and Correlative Studies Of a Phase I Trial With The Oral PARP1-2 Inhibitor Veliparib In Combination With Bortezomib In Patients With Relapsed Or Refractory Multiple Myeloma. Blood, 2013, 122, 1978-1978.	0.6	1
67	Impact of COVID-19 on the Diagnosis and Management of Multiple Myeloma: Experience from a Canadian Center. Revista De Investigacion Clinica, 2022, 74, .	0.2	0
68	A Clinically Relevant SCID-hu in Vivo Model of Human Multiple Myeloma Blood, 2004, 104, 2455-2455.	0.6	0
69	Inhibition of Human Plasmacytoma Cell Growth by a Novel JAK Kinase Inhibitor Blood, 2004, 104, 644-644.	0.6	0
70	Alkylphosphocholine Perifosine Inhibits Myeloma Cell Growth While Inducing Myeloid Hyperplasia in a Murine Myeloma Model Blood, 2005, 106, 1579-1579.	0.6	0
71	Elevated Apurinic/Apyrimidinic Endonuclease Activity Significantly Contributes to DNA Instability in Multiple Myeloma Blood, 2006, 108, 2077-2077.	0.6	0
72	Modulation of Gene Expression Profile and In Vivo Anti-Myeloma Activity Induced by Valproic Acid, a Histone Deacytylase Inhibitor Blood, 2007, 110, 4790-4790.	0.6	0

#	Article	IF	CITATIONS
73	Integrin \hat{I}^2 7-Mediated Regulation of Multiple Myeloma Cell Adhesion, Migration and Survival Blood, 2009, 114, 949-949.	0.6	O
74	SCID-Synth-Hu: a Novel Multiple Myeloma Model for In Vivo Expansion of Primary Cells. Blood, 2010, 116, 452-452.	0.6	0
75	A miRNA Risk Score for the Prediction of Response to Rituximab-CHOP Therapy and Survival of Patients with Diffuse Large B-Cell Lymphoma. Blood, 2010, 116, 324-324.	0.6	O
76	Bortezomib Impairs Myeloma Cells (MM) Homologous Recombination Through Inhibition of the E2-Ubiquitin-Conjugating Enzyme UBC13. Blood, 2011, 118, 1834-1834.	0.6	0
77	Lenalidomide Induces A Ribosomal Stress Response In Multiple Myeloma (MM) Cells. Blood, 2013, 122, 3161-3161.	0.6	O
78	Monoclonal Gammopathy of Clinical Significance - a Single Center Experience. Blood, 2018, 132, 4495-4495.	0.6	0
79	Genetic and Transcript Changesin Cereblon in IMiD-Treated Myeloma Patients. Blood, 2019, 134, 1793-1793.	0.6	О
80	Suboptimal response for AL amyloidosis: is it time for early switch? Experience from a single amyloid program. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2022, , 1-2.	1.4	0