Satyender Khatkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160805/publications.pdf Version: 2024-02-01

		126907	254184
137	3,271	33	43
papers	citations	h-index	g-index
137	137	137	1137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and photoluminescent performance of novel europium (III) carboxylates with heterocyclic ancillary ligands. Rare Metals, 2022, 41, 1342-1352.	7.1	13
2	Sm3+ doped Bi4MgO4(PO4)2:crystal and optoelectronic investigation of the solution combustion derived bright orange emanating novel nanophosphor for SSLs. Materials Chemistry and Physics, 2022, 276, 125389.	4.0	17
3	Structural and photometric investigations of green emanating Er3+ activated SrGd2Al2O7 nanophosphors for solid state illumination applications. Materials Chemistry and Physics, 2022, 277, 125542.	4.0	22
4	Eu3+ incorporated Bi4MgO4(PO4)2: Derivation of the novel nanophosphor by solution combustion and investigation in to crystallographic and photometric characteristics. Solid State Sciences, 2022, 124, 106799.	3.2	5
5	Applicability of Reddish-Orange Light Emitting Samarium (III) Complexes for Biomedical and Multifunctional Optoelectronic Devices. Journal of Fluorescence, 2022, 32, 613-627.	2.5	19
6	Optoelectronic and biological quantification of semi-conducting, crimson europium chelates with fluorinated β-keto acid and N-donor ancillary ligands. Research on Chemical Intermediates, 2022, 48, 1685-1716.	2.7	13
7	Design of color tunable SrLa2Al2O7:Eu3+ perovskite type nanophosphor for near-ultraviolet excited white LEDs. Journal of Materials Science: Materials in Electronics, 2022, 33, 5983-5996.	2.2	5
8	New Insights into Optoelectronic Features of Eu(III) Complexes with Heterocyclic Ligand for Advanced Optical Applications. Journal of Fluorescence, 2022, 32, 1073-1087.	2.5	5
9	Optical and photophysical portrayal of Sm3+ complexes possessing two band gaps for relevance in solar cells and photovoltaic devices. Journal of Molecular Structure, 2022, 1260, 132847.	3.6	19
10	An efficient synthesis of trivalent erbium activated BaYZn3AlO7 nano-sized phosphors for illumination purpose. Optik, 2022, 257, 168774.	2.9	6
11	Crystal chemistry and photoluminescent aspects of down-converted Tb3+ activated SrGdAlO4 nanophosphors for multifunctional applications. Journal of Solid State Chemistry, 2022, 310, 123030.	2.9	11
12	Structural and Optoelectronic Investigation of Combustion-Derived Ba2Zn2La4O10: Er3+ Green Emitters for n-UV-Based White LEDs. Journal of Electronic Materials, 2022, 51, 3637-3649.	2.2	1
13	Urbach and Judd-Ofelt analysis of crystalline samarium (III) complexes with Î ² -ketocarboxylate and nitrogen donor secondary ligands. Polyhedron, 2022, 221, 115847.	2.2	17
14	Investigations into spectroscopic and optoelectronic behaviour of furoic acidâ€based Eu(III) complexes for advanced photonic applications. Luminescence, 2022, , .	2.9	3
15	Fluoroquinolones Metal Complexes as Potent Antibacterial Agents. Asian Journal of Chemistry, 2022, 34, 1055-1065.	0.3	0
16	Photophysical investigations of red light emanating Eu(III) complexes with dioxoester functionalized ligand for optoelectronic applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114003.	3.9	3
17	Judd-Ofelt, optical and photophysical analysis of β-ketocarboxylate Sm(III) complexes with N-donor aromatic system as secondary sensitizers. Optical Materials, 2022, 128, 112463.	3.6	13
18	Judd-Ofelt analysis of warm reddish orange light emanating samarium (III) complexes possessing two band gaps. Journal of Molecular Structure, 2022, , 133423.	3.6	7

#	Article	IF	CITATIONS
19	Achieving crimson red emission of europium (III) complexes with \hat{I}^2 -keto acids and ancillary ligands for their applications in optoelectronic devices and biomedical domain. Optik, 2022, 264, 169389.	2.9	10
20	Reinforced Optical Properties of Sm3+ Complexes with β-Hydroxyketone Ligand by Using Methylated Auxiliary Ligands. Asian Journal of Chemistry, 2022, 34, 1749-1754.	0.3	0
21	Synthesis and photosensitization study of red luminescent europium (III) complexes with heterocyclic ligands for application in OLEDs. Inorganic Chemistry Communication, 2022, 142, 109720.	3.9	10
22	Sm3+ incorporated Ba2GdV3O11: Photometric and crystal analysis of the ultraviolet triggered nanophosphor with white emission. Chemical Physics, 2022, 561, 111623.	1.9	1
23	Utilization of Judd-Ofelt theory to assess the photophysical properties of β-keto carboxylate Tb(III) complexes with heterocyclic secondary sensitizer. Optical Materials, 2022, 131, 112629.	3.6	15
24	Realization of tricolor luminescence from novel Sr5Al2O8:Sm3+, Er3+& Dy3+ nanomaterials for advanced photonic applications. Chemical Physics Letters, 2021, 762, 138134.	2.6	18
25	Multicolor luminescence evolving from single-phase Eu3+/Tb3+ co-doped SrLaAlO4 nanomaterials for advanced photonic appliances. Chemical Physics Letters, 2021, 763, 138243.	2.6	34
26	Structural, optical and morphological features of combustion derived Ba3Y4O9: Dy3+ nanocrystalline phosphor with white light emission. Optik, 2021, 228, 166176.	2.9	11
27	Achieving orange red emission with high color purity from novel perovskite based Sr9Al6O18:Sm3+ nano-cubes for advanced optoelectronic applications. Ceramics International, 2021, 47, 5432-5445.	4.8	48
28	Photoluminescence performance of green light emitting terbium (III) complexes with βâ€hydroxy ketone and nitrogen donor ancillary ligands. Luminescence, 2021, 36, 742-754.	2.9	12
29	Structural and optical characterizations of cool white light emitting Ba2Zn2La4O10:Dy3+ nanophosphor for advanced optoelectronic applications. Chemical Physics Letters, 2021, 765, 138289.	2.6	3
30	Enhanced Optoelectronic and Biological Potential of Virescent-Glowing Terbium(III) Complexes with Pyrazole Acid. Journal of Electronic Materials, 2021, 50, 2656-2668.	2.2	18
31	Crystal structure and photoluminescent analysis of bright orange-red emanating Sm3+-doped Ca9Bi(VO4)7 nanophosphor for WLEDs. Journal of Materials Science: Materials in Electronics, 2021, 32, 8615-8627.	2.2	13
32	Synthesis and crystal structural analysis of a green light-emitting Ba5Zn4Y8O21:Er3+ nanophosphor for PC-WLEDs applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 11683-11694.	2.2	11
33	Synthesis of cool white light emitting novel dysprosium (Dy ³⁺) complexes with tetradentate βâ€ketoamide and heterocyclic auxiliary ligands. Luminescence, 2021, 36, 1209-1219.	2.9	14
34	Luminescence tuning and structural analysis of new BaYAlZn3O7:Sm3+ nanomaterials with excellent performance for advanced optoelectronic appliances. Journal of Materials Science: Materials in Electronics, 2021, 32, 15930-15943.	2.2	21
35	Cool-white illumination characteristics of combustion-derived novel single-phase Sr9Al6O18: Dy3+ nanomaterials for NUV induced WLEDs and solar cells. Chemical Physics Letters, 2021, 770, 138438.	2.6	40
36	Designing of emerald terbium (III) ions with βâ€ketocarboxylic acid and heterocyclic ancillary ligands for biological and optoelectronic applications. Luminescence, 2021, 36, 1658-1670.	2.9	28

#	Article	IF	CITATIONS
37	Crystallographic and Judd-Ofelt Parametric investigation into Ca9Bi(VO4)7:Eu3+ nanophosphor for NUV-WLEDs. Journal of Luminescence, 2021, 234, 117984.	3.1	36
38	Highly efficient green-glimmering Y3Al5O12:Er3+ NPs for next generation electro-optic appliances, mainly white-LEDs and solar-cells. Chemical Physics Letters, 2021, 773, 138592.	2.6	30
39	Cool white light emanation and photo physical features of combustion derived Dy3+ doped ternary yttrate oxide based nanophosphors for down converted WLEDs. Chemical Physics Letters, 2021, 773, 138608.	2.6	36
40	Probing into multifunctional deep orange-red emitting Sm3+-activated zincate based nanomaterials for wLED applications. Chemical Physics Letters, 2021, 777, 138743.	2.6	33
41	Facile combustion fabrication and optical investigation of novel Er3+-activated BaSrY4O8 green emitter for solid state lighting applications. Optik, 2021, 241, 167041.	2.9	18
42	Structural and spectroscopic analysis of green glowing down-converted BYO:Er3+ nanophosphors for pc-WLEDs. Ceramics International, 2021, 47, 25602-25613.	4.8	12
43	Crystal chemistry and photoluminescent investigation of novel white light emanating Dy3+ doped Ca9Bi(VO4)7 nanophosphor for ultraviolet based white LEDs. Materials Chemistry and Physics, 2021, 270, 124828.	4.0	32
44	Designing of luminescent complexes of europium(III) ion with hydroxyl ketone and nitrogen donor secondary ligands for improving the luminescence performance and biological actions. Inorganica Chimica Acta, 2021, 525, 120463.	2.4	24
45	Augmenting the photoluminescence efficiency via enhanced energy-relocation of new white-emanating BaYAlZn3O7:Dy3+ nano-crystalline phosphors for WLEDs. Journal of Alloys and Compounds, 2021, 879, 160371.	5.5	47
46	Reddish-orange light emission via combustion synthesized Ba3Y4O9: Sm3+ nanocrystalline phosphor upon near ultraviolet excitation. Journal of Luminescence, 2020, 217, 116806.	3.1	37
47	A blue to green tunable Ba3GdP3O12:Tb3+ nanophosphor: structural and opto-electronic analysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 3750-3758.	2.2	8
48	Ba5Zn4Gd8O21:Tb3+—structural characterization and the Judd-Ofelt parameterization from emission spectra. Methods and Applications in Fluorescence, 2020, 8, 035002.	2.3	16
49	Photometric features and typical white light emanation via combustion derived trivalent dysprosium doped ternary aluminate oxide based nanophosphor for WLEDs. Ceramics International, 2020, 46, 4204-4214.	4.8	21
50	Synthesis, NMR and optical features of intense green color terbium(III) complexes. Optik, 2020, 202, 163636.	2.9	10
51	Structural and Judd-Ofelt intensity parameters of a down-converting Ba2GdV3O11:Eu3+ nanophosphors. Materials Chemistry and Physics, 2020, 243, 122631.	4.0	28
52	Crystal configuration and photoluminescent aspects of red-emitting combustion synthesized novel BaYZn3AlO7: Eu3+ nanophosphor. Journal of Alloys and Compounds, 2020, 823, 153641.	5.5	17
53	Characteristics of down conversion green emitting Ba3Bi2(PO4)4:Tb3+ nanosized particles for advanced illuminating devices. Journal of Materials Science: Materials in Electronics, 2020, 31, 1216-1226.	2.2	9
54	Ba2YV3O11:Eu3+â^'Density functional and experimental analysis of crystal, electronic and optical properties. Journal of Alloys and Compounds, 2020, 821, 153471.	5.5	15

#	Article	IF	CITATIONS
55	Combustion derived color tunable Sm3+ activated BaLaAlO4 nanocrystals for various innovative solid state illuminants. Chemical Physics Letters, 2020, 758, 137937.	2.6	48
56	Structural, spectroscopic and optical analysis of green-glowing BaLaAlO4:Er3+ nanomaterials for photonic applications. Chemical Physics Letters, 2020, 760, 138004.	2.6	33
57	Ba2Zn2La4O10:Sm3+: A novel orange–red emitting nanophosphor with high color purity for WLEDs applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 20785-20797.	2.2	5
58	Synthesis and photoluminescence analysis of europium(III) complexes with pyrazole acid and nitrogen containing auxiliary ligands. Spectroscopy Letters, 2020, 53, 625-647.	1.0	38
59	Crystal structure engineering and optical analysis of novel greenish Sr9Al6O18:Er3+ nanomaterials for NUV excitable cool-white LED applications. Chemical Physics Letters, 2020, 759, 138044.	2.6	34
60	Structural and Photo-luminescence examination of red emissive Eu3+-doped nanophosphor synthesized via solution-combustion method. Chemical Physics Letters, 2020, 754, 137657.	2.6	10
61	A novel strategy for high color purity virescent Er3+-doped SrLaAlO4 nanocrystals for solid-state lighting applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 6072-6083.	2.2	38
62	Spectroscopic characteristics of Eu3+-activated Ca9Y(PO4)7 nanophosphors in Judd–Ofelt framework. Solid State Sciences, 2020, 108, 106341.	3.2	11
63	Fabrication of single-phase BaLaAlO ₄ :Dy ³⁺ nanophosphors by combustion synthesis. Materials and Manufacturing Processes, 2020, 35, 1259-1267.	4.7	48
64	Tailoring the tunable luminescence from novel Sm3+ doped SLAO nanomaterials for NUV-excited WLEDs. Chemical Physics Letters, 2020, 755, 137758.	2.6	48
65	Influence of Tb3+ doping on the structural and down-conversion luminescence behaviour of SrLaAlO4 nanophosphor. Journal of Luminescence, 2020, 221, 117064.	3.1	37
66	Emanating cool white light emission from novel down-converted SrLaAlO4:Dy3+ nanophosphors for advanced optoelectronic applications. Ceramics International, 2020, 46, 16274-16284.	4.8	77
67	Facile combustion synthesis of Sm3+ activated orange-red light emanating Sr6Y2Al4O15 nanophosphor for photonic applications. Journal of Luminescence, 2020, 224, 117277.	3.1	16
68	Structural and optical investigation of Tb3+-doped Ba3Y4O9 nanocrystals for solid state lighting applications. Journal of Solid State Chemistry, 2020, 288, 121333.	2.9	21
69	An energy-efficient novel emerald Er3+ doped SrGdAlO4 nanophosphor for PC WLEDs excitable by NUV light. Ceramics International, 2019, 45, 24104-24114.	4.8	66
70	A hybrid treatment of Ba2LaV3O11:Eu3+ nanophosphor system: First-principal and experimental investigations into electronic, crystal and the optical structure. Journal of Alloys and Compounds, 2019, 805, 84-96.	5.5	29
71	An effective emission of characteristic cool white light from Dy3+ doped perovskite type SrLa2Al2O7 nanophosphors in single-phase pc WLEDs. Chemical Physics Letters, 2019, 737, 136842.	2.6	71
72	Radiative and non-radiative characteristics of Ca9Bi(PO4)7:Eu3+ nano-phosphor for solid state lighting devices. Journal of Luminescence, 2019, 216, 116697.	3.1	24

#	Article	IF	CITATIONS
73	Magnetic- and electric-dipole radiative rates in multifunctional Ba5Zn4Y8O21:Tb3+ nanorods. Journal of Materials Science: Materials in Electronics, 2019, 30, 17547-17558.	2.2	18
74	Crystal chemistry and optical analysis of a novel perovskite type SrLa2Al2O7:Sm3+ nanophosphor for white LEDs. Ceramics International, 2019, 45, 15571-15579.	4.8	39
75	Crystal structure, synthesis and photoluminescent properties of a reddish-orange light emitting SrGdAlO4: Sm3+ nanophosphor. Materials Chemistry and Physics, 2019, 232, 39-48.	4.0	39
76	Characteristic white light emission via down-conversion SrGdAlO4:Dy3+ nanophosphor. Current Applied Physics, 2019, 19, 621-628.	2.4	39
77	Combustion synthesis, Judd–Ofelt parameters and optical properties of color tunable Ba3Y4O9: Eu3+ nanophosphor for near-UV based WLEDs. Journal of Materials Science: Materials in Electronics, 2019, 30, 8751-8762.	2.2	23
78	Structural analysis and Judd-Ofelt parameterization of Ca9Gd(PO4)7:Eu3+ nanophosphor for solid-state illumination. Journal of Luminescence, 2019, 210, 293-302.	3.1	39
79	Crystal structure and photophysical features of greenish perovskite type SrLa ₂ Al ₂ O ₇ :Er ³⁺ nanocrystals for down conversion white LEDs. Materials Research Express, 2019, 6, 126213.	1.6	29
80	Photoluminescent and structural properties of color tunable trivalent europium doped SrGdAlO4 nanophosphors. Journal of Materials Science: Materials in Electronics, 2019, 30, 1297-1309.	2.2	22
81	Near-ultraviolet excited down-conversion Sm3+-doped Ba5Zn4Gd8O21 reddish-orange emitting nano-diametric rods for white LEDs. Ceramics International, 2019, 45, 7397-7406.	4.8	51
82	Color tunable nanocrystalline SrGd2Al2O7:Tb3+ phosphor for solid state lighting. Ceramics International, 2019, 45, 606-613.	4.8	49
83	Synthesis and photoluminescence properties of europium(III) complexes sensitized with β-diketonato and N, N-donors ancillary ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 67-75.	3.9	21
84	Optical analysis of a novel color tunable Ba2Y(1-)Eu AlO5 nanophosphor in Judd-Ofelt framework for solid state lighting. Journal of Luminescence, 2018, 199, 442-449.	3.1	28
85	Energy transfer and photoluminescent analysis of a novel color-tunable Ba 2 Y 1-x V 3 O 11 : x Sm 3+ nanophosphor for single-phased phosphor-converted white LEDs. Ceramics International, 2018, 44, 10531-10538.	4.8	26
86	Structural and photoluminescent analysis in Judd-Ofelt framework of color tunable SrGd2(1-)Eu2Al2O7 nanophosphor for white light emitting materials. Journal of Luminescence, 2018, 194, 271-278.	3.1	33
87	Structural and photoluminescent elucidation of the efficient green emitting erbium doped BaY2ZnO5 nanophosphor for light emitting materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 2175-2183.	2.2	18
88	Synthesis and luminescent properties of Tb3+ doped BaLa2ZnO5 nanoparticles. Materials Research Bulletin, 2018, 99, 86-92.	5.2	32
89	Optical properties of trivalent samarium-doped Ba5Zn4Y8O21 nanodiametric rods excitable by NUV light. Journal of Alloys and Compounds, 2018, 767, 409-418.	5.5	50
90	Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process. Journal of Fluorescence, 2018, 28, 775-784.	2.5	15

#	Article	IF	CITATIONS
91	Relative Study of Luminescent Properties with Judd-Ofelt Characterization in Trivalent Europium Complexes Comprising ethyl-(4-fluorobenzoyl) Acetate. Journal of Fluorescence, 2017, 27, 1349-1358.	2.5	22
92	Synthesis, Optical Investigation and Biological Properties of Europium(III) Complexes with 2-(4-Chlorophenyl)-1-(2-Hydroxy-4-Methoxyphenyl)Ethan-1-one and Ancillary Ligands. Journal of Fluorescence, 2017, 27, 1-11.	2.5	31
93	Terbium(III) complexes sensitized with β-diketone and ancillary ligands: Synthesis, elucidation of photoluminescence properties and mechanism. Journal of Materials Science: Materials in Electronics, 2016, 27, 9306-9313.	2.2	11
94	Synthesis, photoluminescence features with intramolecular energy transfer and Judd–Ofelt analysis of highly efficient europium(III) complexes. Journal of Materials Science: Materials in Electronics, 2016, 27, 12506-12516.	2.2	18
95	Synthesis, NMR, photoluminescence studies and intramolecular energy transfer process of europium(III) complexes. Journal of Fluorine Chemistry, 2016, 188, 177-184.	1.7	13
96	Optical Features of Efficient Europium(III) Complexes with β-Diketonato and Auxiliary Ligands and Mechanistic Investigation of Energy Transfer Process. Journal of Fluorescence, 2016, 26, 1813-1823.	2.5	9
97	Judd-Ofelt and structural analysis of colour tunable BaY 2 ZnO 5 :Eu 3+ nanocrystals for single-phased white LEDs. Journal of Alloys and Compounds, 2016, 686, 366-374.	5.5	54
98	Structural and photoluminescence investigations of Sm3+ doped BaY2ZnO5 nanophosphors. Materials Research Bulletin, 2016, 77, 91-100.	5.2	34
99	A promising novel orange–red emitting SrZnV 2 O 7 :Sm 3+ nanophosphor for phosphor-converted white LEDs with near-ultraviolet excitation. Journal of Physics and Chemistry of Solids, 2016, 89, 45-52.	4.0	30
100	Investigations of luminescent behavior and intramolecular energy transfer mechanism of europium(III) complexes with fluorinated β-ketoester ligand. Journal of Fluorine Chemistry, 2016, 181, 36-44.	1.7	19
101	Synthesis, characterization, enhanced photoluminescence, antimicrobial and antioxidant activities of novel Sm(III) complexes containing 1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone and nitrogen containing ancillary ligands. Journal of Materials Science: Materials in Electronics, 2016, 27, 878-885.	2.2	26
102	Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 304-310.	3.9	17
103	Photoluminescence and structural properties of Eu3+ doped SrZnV2O7 nanocrystals. Journal of Luminescence, 2015, 161, 63-70.	3.1	25
104	Synthesis and optical properties of Gd2(1â^'x)O3: 2xEu3+ nanophosphors via tartaric assisted sol–gel route. Journal of Sol-Gel Science and Technology, 2015, 74, 24-31.	2.4	12
105	Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands. Journal of Materials Science: Materials in Electronics, 2015, 26, 7086-7095.	2.2	20
106	Photoluminescent properties of Tb3+ doped GdSrAl3O7 nanophosphor using solution combustions synthesis. Electronic Materials Letters, 2015, 11, 409-415.	2.2	5
107	Synthesis, photoluminescent features and intramolecular energy transfer mechanism of europium (III) complexes with fluorinate β-diketone ligand and auxiliary ligands. Journal of Fluorine Chemistry, 2015, 178, 6-13.	1.7	24
108	Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors. Journal of Electronic Materials, 2015, 44, 542-548.	2.2	15

#	Article	IF	CITATIONS
109	Crystal structure and photoluminescent properties of BaZn1â^'Eu V2O7 nanoparticles. Materials Chemistry and Physics, 2015, 149-150, 713-720.	4.0	20
110	Synthesis and luminescent properties of BaLn2(1â^'x)ZnO5:2xTb3+ (LnÂ=ÂY, Gd) nanophosphors. Journal of Materials Science, 2014, 49, 572-579.	3.7	9
111	Combustion Synthesis and Optical Properties of Eu3+-Doped BaGd2ZnO5 f–f Transition Nanophosphor for White LED. Journal of Electronic Materials, 2014, 43, 1174-1180.	2.2	9
112	Structural and optical properties of BaZrO \$\$_{3}\$\$ 3 :Eu \$\$^{3+}\$\$ 3 + phosphor. Optical and Quantum Electronics, 2014, 46, 1499-1508.	3.3	4
113	Structural and luminescent properties of Eu3+-doped GdSrAl3O7 nanophosphor. Journal of Materials Science, 2014, 49, 4773-4779.	3.7	22
114	Enhanced optoelectronics properties of europium(III) complexes with β-diketone and nitrogen heterocyclic ligands. Journal of Materials Science: Materials in Electronics, 2014, 25, 2850-2856.	2.2	20
115	Synthesis, structural and optical properties of SrZrO3:Eu3+ phosphor. Journal of Rare Earths, 2014, 32, 293-297.	4.8	36
116	Synthesis, structural and optical properties of Eu3+–doped Ca2V2O7 nanophosphors. Current Applied Physics, 2013, 13, 594-598.	2.4	48
117	Luminescence and structural properties of Eu3+ doped BaY2ZnO5 for LED solid-state lighting application. Journal of Materials Science: Materials in Electronics, 2013, 24, 4677-4683.	2.2	26
118	Synthesis, characterization and luminescent properties of Eu/Tb-doped LaSrAl3O7 nanophosphors. Journal of Alloys and Compounds, 2013, 549, 135-140.	5.5	29
119	Sol–gel synthesis, characterization and luminescent properties of Tb3+ doped MLa2O4 (M=Sr or Ba) nanophosphors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1436-1442.	3.5	5
120	Synthesis and Luminescent Properties of M2V2O7: Eu (M=Sr, Ba) Nanophosphors. Journal of Fluorescence, 2012, 22, 891-897.	2.5	22
121	Characterization and photoluminescence properties of some MLn2(1â^'x)O4:2xEu3+ or 2xTb3+ systems (M=Ba or Sr, Ln=Gd or La). Journal of Luminescence, 2011, 131, 587-591.	3.1	31
122	Luminescent properties of europium and terbium complexes with 2′-hydroxy-4′,6′-dimethoxyacetophenone. Displays, 2010, 31, 116-121.	3.7	22
123	Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors. Journal of Luminescence, 2010, 130, 2128-2132.	3.1	77
124	Synthesis and characterization of luminescent Eu(HMAP)3·2H2O and Tb(HMAP)3·2H2O complexes. Displays, 2009, 30, 170-174.	3.7	16
125	Tartaric acid-assisted sol–gel synthesis of Y2O3:Eu3+ nanoparticles. Journal of Alloys and Compounds, 2009, 469, 224-228.	5.5	61
126	Synthesis, characterizations and luminescent properties of terbium complexes with methoxy derivatives of 2′-hydroxy-2-phenylacetophenone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 1119-1124.	3.9	19

#	Article	IF	CITATIONS
127	Preparation and photoluminescent properties of europium complexes with methoxy derivatives of 2′-hydroxy-2-phenylacetophenones. Journal of Luminescence, 2008, 128, 1297-1302.	3.1	21
128	Preparation and photoluminescence characteristics of Eu3+-doped MgAl1.8Y0.2O4 nanocrystals. Journal of Luminescence, 2007, 126, 597-601.	3.1	14
129	Synthesis of indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) nano-powder by sol–gel combustion hybrid method. Materials Letters, 2007, 61, 1701-1703.	2.6	69
130	The influence of sintering temperature on particle size/shape and photoluminescence characteristics of CaIn2O4:xTb synthesized by combustion process. Optical Materials, 2007, 29, 1362-1366.	3.6	13
131	Combustion synthesis and luminescent properties of Eu3+-doped LnAlO3 (Ln=Y and Gd) phosphors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 272-275.	3.5	34
132	Synthesis, luminescence and effect of heat treatment on the properties of Dy3+-doped YVO4 phosphor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129, 126-130.	3.5	82
133	Synthesis and luminescent properties of Caln2O4:xTb nanocrystals. Current Applied Physics, 2006, 6, e192-e194.	2.4	3
134	Combustion synthesis and luminescent properties of MIn2O4:xTb (M=Ca and Sr) phosphors. Materials Chemistry and Physics, 2006, 98, 528-531.	4.0	14
135	Characterization and Luminescent Properties of YPO4:Eu3+ Nanocrystals Prepared by Combustion Method. ECS Transactions, 2006, 2, 59-66.	0.5	2
136	Luminescent Properties of ZnS:Eu2+ Nanocrystals. ECS Transactions, 2006, 1, 7-12.	0.5	12
137	International Symposium on Electroanalysis and Sensors in Biomedical, Environmental and Industrial Sciences, Analytical Proceedings, 1987, 24, 324.	0.4	6