Yen Chean Soo Too

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11607855/publications.pdf

Version: 2024-02-01

933447 1125743 13 566 10 13 citations h-index g-index papers 13 13 13 444 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exergetic analysis of supercritical CO 2 Brayton cycles integrated with solar central receivers. Applied Energy, 2015, 148, 348-365.	10.1	245
2	Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications. Applied Thermal Engineering, 2013, 50, 1076-1083.	6.0	64
3	Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions. Energy, 2018, 153, 1016-1027.	8.8	63
4	Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector. Applied Energy, 2016, 169, 49-62.	10.1	60
5	Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	26
6	Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances. Renewable Energy, 2018, 121, 355-367.	8.9	25
7	A transient optical-thermal model with dynamic matrix controller for solar central receivers. Applied Thermal Engineering, 2019, 154, 686-698.	6.0	19
8	Optimized operation of recompression sCO2 Brayton cycle based on adjustable recompression fraction under variable conditions. Energy, 2021, 227, 120334.	8.8	19
9	Multi-objective thermodynamic optimisation of supercritical CO ₂ Brayton cycles integrated with solar central receivers. International Journal of Sustainable Energy, 2018, 37, 1-20.	2.4	18
10	Multivariable Closed Control Loop Methodology for Heliostat Aiming Manipulation in Solar Central Receiver Systems. Journal of Solar Energy Engineering, Transactions of the ASME, 2018, 140, .	1.8	11
11	Aiming clusters of heliostats over solar receivers for distributing heat flux using one variable per group. Renewable Energy, 2020, 160, 584-596.	8.9	9
12	Transient simulation of a control strategy for solar receivers based on mass flow valves adjustments and heliostats aiming. Renewable Energy, 2022, 185, 1221-1244.	8.9	4
13	Tuning Analysis and Optimization of a Cluster-Based Aiming Methodology for Solar Central Receivers. Frontiers in Energy Research, 2022, 10, .	2.3	3