Han Joon Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11607583/han-joon-kim-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37 papers	3,248 citations	27 h-index	37 g-index
37 ext. papers	3,817 ext. citations	8.6 avg, IF	5.06 L-index

#	Paper	IF	Citations
37	Transient Negative Capacitance Effect in Atomic-Layer-Deposited Al2O3/Hf0.3Zr0.7O2 Bilayer Thin Film. <i>Advanced Functional Materials</i> , 2019 , 29, 1808228	15.6	31
36	Impact of Zr Content in Atomic Layer Deposited Hf1 IkZrxO2 Thin Films 2019 , 75-101		3
35	Effect of Surface/Interface Energy and Stress on the Ferroelectric Properties 2019 , 145-172		4
34	Electrically-generated memristor based on inkjet printed silver nanoparticles. <i>Nanoscale Advances</i> , 2019 , 1, 2990-2998	5.1	13
33	A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. <i>Applied Physics Reviews</i> , 2019 , 6, 041403	17.3	41
32	Composition, Microstructure, and Electrical Performance of Sputtered SnO Thin Films for p-Type Oxide Semiconductor. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 3810-3821	9.5	13
31	Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. <i>Nanoscale</i> , 2018 , 10, 716-725	7.7	103
30	Morphotropic Phase Boundary of HfZr O Thin Films for Dynamic Random Access Memories. <i>ACS Applied Materials & Dynamic Random Access Memories.</i> 10, 42666-42673	9.5	37
29	Dispersion in Ferroelectric Switching Performance of Polycrystalline HfZrO Thin Films. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	38
28	Filament Shape Dependent Reset Behavior Governed by the Interplay between the Electric Field and Thermal Effects in the Pt/TiO2/Cu Electrochemical Metallization Device. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600404	6.4	20
27	Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. <i>Nanoscale</i> , 2017 , 9, 9973-9986	7.7	162
26	Research Update: Diode performance of the Pt/Al2O3/two-dimensional electron gas/SrTiO3 structure and its time-dependent resistance evolution. <i>APL Materials</i> , 2017 , 5, 042301	5.7	6
25	Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors. <i>Nano Energy</i> , 2017 , 39, 390-399	17.1	59
24	Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation. <i>Nano Letters</i> , 2017 , 17, 7796-7802	11.5	43
23	Preparation and characterization of ferroelectric HfZrO thin films grown by reactive sputtering. <i>Nanotechnology</i> , 2017 , 28, 305703	3.4	48
22	A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. <i>Nanoscale</i> , 2016 , 8, 1383-9	7.7	153
21	Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure. <i>Scientific Reports</i> , 2016 , 6, 190	39 4.9	37

(2013-2016)

20	Effect of Zr Content on the Wake-Up Effect in Hf1-xZrxO2 Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 15466-75	9.5	132
19	Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films. <i>Nanoscale</i> , 2016 , 8, 13898-907	7.7	36
18	Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors. <i>Scientific Reports</i> , 2016 , 6, 20825	4.9	36
17	Time-Dependent Negative Capacitance Effects in Al2O3/BaTiO3 Bilayers. <i>Nano Letters</i> , 2016 , 16, 4375-	·8 1 1.5	59
16	Giant Negative Electrocaloric Effects of Hf Zr O Thin Films. <i>Advanced Materials</i> , 2016 , 28, 7956-7961	24	91
15	Improved Initial Growth Behavior of SrO and SrTiO3 Films Grown by Atomic Layer Deposition Using {Sr(demamp)(tmhd)}2 as Sr-Precursor. <i>Chemistry of Materials</i> , 2015 , 27, 3881-3891	9.6	29
14	Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. <i>Advanced Materials</i> , 2015 , 27, 1811-31	24	554
13	Reducing the nano-scale defect formation of atomic-layer-deposited SrTiO3 films by adjusting the cooling rate of the crystallization annealing of the seed layer. <i>Thin Solid Films</i> , 2015 , 589, 723-729	2.2	8
12	Interfacial charge-induced polarization switching in Al2O3/Pb(Zr,Ti)O3 bi-layer. <i>Journal of Applied Physics</i> , 2015 , 118, 224105	2.5	24
11	Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling. <i>Applied Physics Letters</i> , 2015 , 107, 192907	3.4	92
10	Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric Hf \times Zr 1 \boxtimes O 2 films. <i>Nano Energy</i> , 2015 , 12, 131-140	17.1	144
9	Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 857-861	2.5	16
8	Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. <i>Applied Physics Letters</i> , 2014 , 105, 192903	3.4	134
7	The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. <i>Applied Physics Letters</i> , 2014 , 104, 072901	3.4	191
6	Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 532-535	2.5	102
5	Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. <i>Applied Physics Letters</i> , 2014 , 105, 072902	3.4	99
4	Thin HfxZr1-xO2 Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. <i>Advanced Energy Materials</i> , 2014 , 4, 1400610	21.8	221
3	Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. <i>Applied Physics Letters</i> , 2013 , 102, 112914	3.4	117

Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. *Applied Physics Letters*, **2013**, 102, 242905

3.4 352

Poster: Polar Dielectrics, Optics, and Ionics633-663