Wenjuan Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11606808/publications.pdf Version: 2024-02-01

Μενιμαν Ταν

#	Article	IF	CITATIONS
1	Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 2017, 110, 210-225.	5.8	230
2	Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environmental Science and Pollution Research, 2015, 22, 10551-10558.	5.3	146
3	Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of the Total Environment, 2016, 563-564, 904-911.	8.0	138
4	Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs – a critical review. Environmental Science: Nano, 2018, 5, 257-278.	4.3	134
5	Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environmental Sciences: Processes and Impacts, 2015, 17, 1783-1793.	3.5	125

6 Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7	Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment, 2020, 725, 138387.	8.0	73
8	Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Science of the Total Environment, 2018, 618, 306-312.	8.0	59
9	Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Science of the Total Environment, 2017, 599-600, 2085-2094.	8.0	58
10	Foliar Exposure of Cu(OH) ₂ Nanopesticide to Basil (<i>Ocimum basilicum</i>): Variety-Dependent Copper Translocation and Biochemical Responses. Journal of Agricultural and Food Chemistry, 2018, 66, 3358-3366.	5.2	48
11	Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations. Science of the Total Environment, 2018, 636, 240-248.	8.0	38
12	Effects of different surface-coated nTiO2 on full-grown carrot plants: Impacts on root splitting, essential elements, and Ti uptake. Journal of Hazardous Materials, 2021, 402, 123768.	12.4	25
13	Interaction of nanomaterials in secondary metabolites accumulation, photosynthesis, and nitrogen fixation in plant systems. Comprehensive Analytical Chemistry, 2019, 84, 55-74.	1.3	7
14	Terrestrial Nanotoxicology: Evaluating the Nano-Biointeractions in Vascular Plants. Nanomedicine and Nanotoxicology, 2017, , 21-42.	0.2	2