Dekai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11606600/publications.pdf

Version: 2024-02-01

22 papers 3,070 citations

15 h-index 752698 20 g-index

22 all docs 22 docs citations

22 times ranked 4077 citing authors

#	Article	IF	CITATIONS
1	NOD2/RIG-I Activating Inarigivir Adjuvant Enhances the Efficacy of BCG Vaccine Against Tuberculosis in Mice. Frontiers in Immunology, 2020, 11 , 592333.	4.8	15
2	TLRs as a Promise Target Along With Immune Checkpoint Against Gastric Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 611444.	3.7	24
3	An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. Npj Vaccines, 2019, 4, 34.	6.0	36
4	MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling. Journal of Biological Chemistry, 2016, 291, 1243-1250.	3.4	16
5	Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13. Nature Structural and Molecular Biology, 2015, 22, 782-787.	8.2	58
6	Toll-like Receptor 11 (TLR11) Prevents Salmonella Penetration into the Murine Peyer Patches. Journal of Biological Chemistry, 2012, 287, 43417-43423.	3.4	21
7	A Mouse Model of Salmonella Typhi Infection. Cell, 2012, 151, 590-602.	28.9	189
8	Activation of Toll-like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth. Cancer Research, 2011, 71, 2466-2475.	0.9	174
9	A Novel Toll-like Receptor That Recognizes Vesicular Stomatitis Virus. Journal of Biological Chemistry, 2011, 286, 4517-4524.	3.4	134
10	$\hat{\Pi^{e}}\hat{B}\hat{I}^{2}$ acts to inhibit and activate gene expression during the inflammatory response. Nature, 2010, 466, 1115-1119.	27.8	175
11	Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells. Journal of Biological Chemistry, 2009, 284, 33088-33096.	3.4	9
12	Transcriptional Regulation of the Novel Toll-like Receptor Tlr13. Journal of Biological Chemistry, 2009, 284, 20540-20547.	3.4	29
13	Tumor Necrosis Factor-α Induces RelA Degradation via Ubiquitination at Lysine 195 to Prevent Excessive Nuclear Factor-ÎB Activation. Journal of Biological Chemistry, 2009, 284, 29290-29297.	3.4	13
14	PPM1A and PPM1B act as IKKβ phosphatases to terminate TNFα-induced IKKβ-NF-κB activation. Cellular Signalling, 2009, 21, 95-102.	3.6	96
15	Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop Is Required for Interleukin (IL)-1-mediated Optimal NFήB and AP-1 Activation as Well as IL-6 Gene Expression. Journal of Biological Chemistry, 2008, 283, 24497-24505.	3.4	94
16	TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein. Science, 2005, 308, 1626-1629.	12.6	862
17	A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria. Science, 2004, 303, 1522-1526.	12.6	909
18	Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 133-144.	3.8	102

#	Article	IF	CITATION
19	Uridine Phosphorylase Association with Vimentin. Journal of Biological Chemistry, 2001, 276, 13302-13307.	3.4	15
20	Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames., 1999, 40, 150-158.		50
21	Prevalence and predictive value ofp53 mutation in patients with oesophageal squamous cell carcinomas: A prospective clinico-pathological study and survival analysis of 70 patients., 1997, 74, 212-219.		46
22	Prevalence and predictive value of p53 mutation in patients with oesophageal squamous cell carcinomas: A prospective clinicoâ€pathological study and survival analysis of 70 patients. International Journal of Cancer, 1997, 74, 212-219.	5.1	3