Woonggyu Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160523/publications.pdf

Version: 2024-02-01

430874 377865 1,263 48 18 34 citations h-index g-index papers 51 51 51 1692 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics. IEEE Transactions on Biomedical Engineering, 2011, 58, 741-744.	4.2	130
2	Quantitative phase imaging for medical diagnosis. Journal of Biophotonics, 2017, 10, 177-205.	2.3	127
3	Noninvasive in vivo optical detection of biofilm in the human middle ear. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9529-9534.	7.1	109
4	Snake fang–inspired stamping patch for transdermal delivery of liquid formulations. Science Translational Medicine, 2019, 11, .	12.4	95
5	Full-range k-domain linearization in spectral-domain optical coherence tomography. Applied Optics, 2011, 50, 1158.	2.1	63
6	In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror. Optics Letters, 2007, 32, 3239.	3.3	61
7	Advances in oral cancer detection using optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 811-817.	2.9	58
8	In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope. Optics Express, 2014, 22, 8985.	3.4	46
9	Substrate curvature affects the shape, orientation, and polarization of renal epithelial cells. Acta Biomaterialia, 2018, 77, 311-321.	8.3	42
10	Optical Coherence Tomography for the Diagnosis and Evaluation of Human Otitis Media. Journal of Korean Medical Science, 2015, 30, 328.	2.5	37
11	Evaluation of fouling in nanofiltration for desalination using a resistance-in-series model and optical coherence tomography. Science of the Total Environment, 2018, 642, 349-355.	8.0	34
12	Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 806-810.	2.9	31
13	Optical properties of acute kidney injury measured by quantitative phase imaging. Biomedical Optics Express, 2018, 9, 921.	2.9	28
14	Depth enhancement in spectral domain optical coherence tomography using bidirectional imaging modality with a single spectrometer. Journal of Biomedical Optics, 2016, 21, 076005.	2.6	25
15	One-photon and two-photon stimulation of neurons in a microfluidic culture system. Lab on A Chip, 2016, 16, 1684-1690.	6.0	24
16	In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture. Carbohydrate Polymers, 2020, 229, 115538.	10.2	24
17	Wide-field optical coherence microscopy of the mouse brain slice. Optics Letters, 2015, 40, 4420.	3.3	21
18	Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study. JMIR MHealth and UHealth, 2017, 5, e99.	3.7	20

#	Article	lF	CITATIONS
19	High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging. Journal of the Optical Society of Korea, 2013, 17, 68-72.	0.6	20
20	Development of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs. Sensors, 2014, 14, 2171-2181.	3.8	19
21	Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques. JMIR MHealth and UHealth, 2020, 8, e16467.	3.7	18
22	Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 1.	2.6	17
23	Labelâ€free optical projection tomography for quantitative threeâ€dimensional anatomy of mouse embryo. Journal of Biophotonics, 2019, 12, e201800481.	2.3	16
24	Turbid two-phase slug flow in a microtube: Simultaneous visualization of structure and velocity field. Applied Physics Letters, 2006, 89, 064109.	3.3	15
25	Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy. Scientific Reports, 2016, 6, 39667.	3.3	15
26	Optical assessment of the <i>in vivo</i> tympanic membrane status using a handheld optical coherence tomography-based otoscope. Acta Oto-Laryngologica, 2018, 138, 367-374.	0.9	15
27	The synergistic effect of biomimetic electrical stimulation and extracellular-matrix-mimetic nanopattern for upregulating cell activities. Biosensors and Bioelectronics, 2020, 167, 112470.	10.1	15
28	Synthetic Retinoid Seletinoid G Improves Skin Barrier Function through Wound Healing and Collagen Realignment in Human Skin Equivalents. International Journal of Molecular Sciences, 2020, 21, 3198.	4.1	15
29	Quantitative monitoring of laser-treated engineered skin using optical coherence tomography. Biomedical Optics Express, 2016, 7, 1030.	2.9	14
30	Quantitative assessment of regional variation in tissue clearing efficiency using optical coherence tomography (OCT) and magnetic resonance imaging (MRI): A feasibility study. Scientific Reports, 2019, 9, 2923.	3.3	11
31	Quantitative Evaluation of Skin Surface Roughness Using Optical Coherence Tomography & lt; italic> In Vivo & lt; italic> IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	11
32	Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 1.	2.6	11
33	Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct. Journal of Biomedical Optics, 2015, 20, 036009.	2.6	9
34	Lateral resolution enhancement using programmable phase modulator in optical coherence tomography. Bio-Medical Materials and Engineering, 2015, 26, S1465-S1471.	0.6	8
35	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. Translational Vision Science and Technology, 2014, 3, 10.	2.2	8
36	Measurement of multispectral scattering properties in mouse brain tissue. Biomedical Optics Express, 2017, 8, 1763.	2.9	7

#	Article	IF	CITATIONS
37	Compartmentalized Arrays of Matrix Droplets for Quantitative Mass Spectrometry Imaging of Adsorbed Peptides. Analytical Chemistry, 2020, 92, 8715-8721.	6.5	7
38	Serial optical coherence microscopy for label-free volumetric histopathology. Scientific Reports, 2020, 10, 6711.	3.3	7
39	Deep-Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image Processing. Sensors, 2022, 22, 3961.	3.8	6
40	Phase correction using programmable phase modulator (PPM) in optical coherence tomography. Biomedical Engineering Letters, 2014, 4, 64-72.	4.1	5
41	Effect of tissue staining in quantitative phase imaging. Journal of Biophotonics, 2018, 11, e201700402.	2.3	5
42	Effect of Air Injection Depth on Big-bubble Formation in Lamellar Keratoplasty: an Ex Vivo Study. Scientific Reports, 2019, 9, 3785.	3.3	5
43	A MEMS based Optical Coherence Tomography Imaging System and Optical Biopsy Probes for Real-Time, High Resolution In-Vivo and In-Vitro 2-D or 3-D Imaging. , 2006, , .		1
44	Imageâ€guided recording system for spatial and temporal mapping of neuronal activities in brain slice. Journal of Biophotonics, 2018, 11, e201700243.	2.3	1
45	Quantification and visualization of metastatic lung tumors in mice. Toxicological Research, 2022, 38, 503-510.	2.1	1
46	3-D MEMS based real-time minimally invasive endoscopic optical coherence tomography., 0,,.		0
47	The application of optical coherence tomography for monitoring of the laser marking performance. , 2007, , .		0
48	Special issue on biomedical optics. Biomedical Engineering Letters, 2014, 4, 199-200.	4.1	0