
Eveline Peeters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering transcriptional regulation in Escherichia coli using an archaeal TetR-family transcription factor. Gene, 2022, 809, 146010.	1.0	0
2	DNA-Binding Properties of a Novel Crenarchaeal Chromatin-Organizing Protein in Sulfolobus acidocaldarius. Biomolecules, 2022, 12, 524.	1.8	1
3	Functional Grading of Mycelium Materials with Inorganic Particles: The Effect of Nanoclay on the Biological, Chemical and Mechanical Properties. Biomimetics, 2022, 7, 57.	1.5	12
4	Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustainable Futures, 2022, 4, 100085.	1.5	11
5	The biology of thermoacidophilic archaea from the order <i>Sulfolobales</i> . FEMS Microbiology Reviews, 2021, 45, .	3.9	24
6	Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS ONE, 2021, 16, e0239792.	1.1	21
7	Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials, 2021, 283, 122732.	3.2	45
8	Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms. PLoS ONE, 2021, 16, e0254025.	1.1	0
9	A review on the potential of filamentous fungi for microbial self-healing of concrete. Fungal Biology and Biotechnology, 2021, 8, 16.	2.5	23
10	Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal Biology and Biotechnology, 2021, 8, 18.	2.5	27
11	Current state and future prospects of pure mycelium materials. Fungal Biology and Biotechnology, 2021, 8, 20.	2.5	55
12	Phosphorylation of the acyl-CoA binding pocket of the FadR transcription regulator in Sulfolobus acidocaldarius. Biochimie, 2020, 175, 120-124.	1.3	9
13	Defining heat shock response for the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius. Extremophiles, 2020, 24, 681-692.	0.9	11
14	A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of the Total Environment, 2020, 725, 138431.	3.9	116
15	Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE, 2019, 14, e0213954.	1.1	119
16	Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Frontiers in Microbiology, 2019, 10, 1563.	1.5	9
17	Editorial overview: Tissue, cell and pathway engineering. Current Opinion in Biotechnology, 2019, 59, iii-v.	3.3	0
18	YtrASa, a GntR-Family Transcription Factor, Represses Two Genetic Loci Encoding Membrane Proteins in Sulfolobus acidocaldarius. Frontiers in Microbiology, 2019, 10, 2084.	1.5	9

EVELINE PEETERS

#	Article	IF	CITATIONS
19	Transcription Regulators in Archaea: Homologies and Differences with Bacterial Regulators. Journal of Molecular Biology, 2019, 431, 4132-4146.	2.0	43
20	Non-monotonic auto-regulation in single gene circuits. PLoS ONE, 2019, 14, e0216089.	1.1	1
21	A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius. Nature Communications, 2019, 10, 1542.	5.8	43
22	Structure of the Prx6-subfamily 1-Cys peroxiredoxin from <i>Sulfolobus islandicus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 428-434.	0.4	6
23	Heat shock response in archaea. Emerging Topics in Life Sciences, 2018, 2, 581-593.	1.1	13
24	Wing phosphorylation is a major functional determinant of the Lrs14â€ŧype biofilm and motility regulator AbfR1 in <i>Sulfolobus acidocaldarius</i> . Molecular Microbiology, 2017, 105, 777-793.	1.2	32
25	DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1. Viruses, 2017, 9, 190.	1.5	10
26	Transcription Factor-Mediated Gene Regulation in Archaea. Nucleic Acids and Molecular Biology, 2017, , 27-69.	0.2	7
27	The genome-scale DNA-binding profile of BarR, a \hat{l}^2 -alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius. BMC Genomics, 2016, 17, 569.	1.2	18
28	The interplay between nucleoid organization and transcription in archaeal genomes. Nature Reviews Microbiology, 2015, 13, 333-341.	13.6	96
29	The â€~Densitometric Image Analysis Software' and Its Application to Determine Stepwise Equilibrium Constants from Electrophoretic Mobility Shift Assays. PLoS ONE, 2014, 9, e85146.	1.1	9
30	<scp>BarR</scp> , an <scp>Lrp</scp> â€ŧype transcription factor in <scp><i>S</i></scp> <i>ulfolobus acidocaldarius</i> , regulates an aminotransferase gene in a βâ€alanine responsive manner. Molecular Microbiology, 2014, 92, 625-639.	1.2	20
31	The oneâ€component system <scp>ArnR</scp> : a membraneâ€bound activator of the crenarchaeal archaellum. Molecular Microbiology, 2013, 88, 125-139.	1.2	53
32	The genome-wide binding profile of the Sulfolobus solfataricustranscription factor Ss-LrpB shows binding events beyond direct transcription regulation. BMC Genomics, 2013, 14, 828.	1.2	21
33	A thermodynamic model of the cooperative interaction between the archaeal transcription factor Ss-LrpB and its tripartite operator DNA. Gene, 2013, 524, 330-340.	1.0	15
34	<i>Cis</i> -regulatory logic in archaeal transcription. Biochemical Society Transactions, 2013, 41, 326-331.	1.6	49
35	Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME Journal, 2013, 7, 1886-1898.	4.4	63
36	Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Research, 2013, 41, 2932-2949.	6.5	21

EVELINE PEETERS

#	Article	IF	CITATIONS
37	Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites. Nucleic Acids Research, 2013, 41, e59-e59.	6.5	25
38	Saâ€ <scp>L</scp> rp from <i><scp>S</scp>ulfolobus acidocaldarius</i> is a versatile, glutamineâ€responsive, and architectural transcriptional regulator. MicrobiologyOpen, 2013, 2, 75-93.	1.2	26
39	The Lrp Family of Transcription Regulators in Archaea. Archaea, 2010, 2010, 1-10.	2.3	83
40	Ss‣rpB, a transcriptional regulator from <i>Sulfolobus solfataricus</i> , regulates a gene cluster with a pyruvate ferredoxin oxidoreductaseâ€encoding operon and permease genes. Molecular Microbiology, 2009, 71, 972-988.	1.2	44
41	Competitive activation of the <i>Escherichia coli argO</i> gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP. Molecular Microbiology, 2009, 74, 1513-1526.	1.2	21
42	Analysis of the DNA-binding sequence specificity of the archaeal transcriptional regulator Ss-LrpB from Sulfolobus solfataricus by systematic mutagenesis and high resolution contact probing. Nucleic Acids Research, 2006, 35, 623-633.	6.5	24
43	Ss-LrpB from Sulfolobus solfataricus Condenses about 100 Base Pairs of Its Own Operator DNA into Globular Nucleoprotein Complexes. Journal of Biological Chemistry, 2006, 281, 11721-11728.	1.6	22
44	Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region. Molecular Microbiology, 2004, 54, 321-336.	1.2	61
45	Mycelium Composites and their Biodegradability: An Exploration on the Disintegration of Mycelium-Based Materials in Soil. , 0, , .		11