Neil J Oldfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160266/publications.pdf

Version: 2024-02-01

361413 330143 36 1,822 20 37 citations h-index g-index papers 38 38 38 3502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, The, 2021, 397, 1351-1362.	13.7	540
2	The moonlighting peroxiredoxin-glutaredoxin in Neisseria meningitidis binds plasminogen via a C-terminal lysine residue and contributes to survival in a whole blood model. Microbial Pathogenesis, 2020, 139, 103890.	2.9	4
3	A role for fibroblast growth factor receptor 1 in the pathogenesis of Neisseria meningitidis. Microbial Pathogenesis, 2020, 149, 104534.	2.9	5
4	Rapid Transmission of a Hyper-Virulent Meningococcal Clone Due to High Effective Contact Numbers and Super Spreaders. Frontiers in Genetics, 2020, 11, 579411.	2.3	3
5	Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage. MBio, 2020, 11 , .	4.1	11
6	Potentiation of Phase Variation in Multiple Outer-Membrane Proteins During Spread of the Hyperinvasive Neisseria meningitidis Serogroup W ST-11 Lineage. Journal of Infectious Diseases, 2019, 220, 1109-1117.	4.0	8
7	Serogroup-specific meningococcal carriage by age group: a systematic review and meta-analysis. BMJ Open, 2019, 9, e024343.	1.9	35
8	Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Frontiers in Microbiology, 2019, 10, 2847.	3.5	12
9	Limited Impact of Adolescent Meningococcal ACWY Vaccination on Neisseria meningitidis Serogroup W Carriage in University Students. Journal of Infectious Diseases, 2018, 217, 608-616.	4.0	22
10	Uptake of Neisserial autotransporter lipoprotein (NalP) promotes an increase in human brain microvascular endothelial cell metabolic activity. Microbial Pathogenesis, 2018, 124, 70-75.	2.9	2
11	University vaccine campaign increases meningococcal ACWY vaccine coverage. Public Health, 2017, 145, 1-3.	2.9	14
12	Rise in Group W Meningococcal Carriage in University Students, United Kingdom. Emerging Infectious Diseases, 2017, 23, 1009-1011.	4.3	33
13	Fructoseâ€1,6â€bisphosphate aldolase of <i>Neisseria meningitidis</i> binds human plasminogen via its Câ€ŧerminal lysine residue. MicrobiologyOpen, 2016, 5, 340-350.	3.0	15
14	Genomic Analysis of Serogroup YNeisseria meningitidisIsolates Reveals Extensive Similarities Between Carriage-Associated and Disease-Associated Organisms. Journal of Infectious Diseases, 2016, 213, 1777-1785.	4.0	12
15	Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cellular Microbiology, 2015, 17, 1008-1020.	2.1	26
16	Optimization of Molecular Approaches to Genogroup Neisseria meningitidis Carriage Isolates and Implications for Monitoring the Impact of New Serogroup B Vaccines. PLoS ONE, 2015, 10, e0132140.	2.5	18
17	A novel <i>O</i> -linked glycan modulates <i>Campylobacter jejuni</i> major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biology, 2014, 4, 130202.	3.6	47
18	Phase Variation Mediates Reductions in Expression of Surface Proteins during Persistent Meningococcal Carriage. Infection and Immunity, 2014, 82, 2472-2484.	2.2	40

#	Article	IF	CITATIONS
19	Fructose-1,6-bisphosphate aldolase (FBA) $\hat{a}\in \hat{a}$ conserved glycolytic enzyme with virulence functions in bacteria: $\hat{a}\in \hat{a}$ met by moonlight $\hat{a}\in \hat{a}$. Biochemical Society Transactions, 2014, 42, 1792-1795.	3.4	64
20	Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and <i>Neisseria meningitidis </i> . Open Biology, 2014, 4, 140053.	3.6	17
21	Prevalence and Phase Variable Expression Status of Two Autotransporters, NalP and MspA, in Carriage and Disease Isolates of Neisseria meningitidis. PLoS ONE, 2013, 8, e69746.	2.5	20
22	Cj1136 Is Required for Lipooligosaccharide Biosynthesis, Hyperinvasion, and Chick Colonization by Campylobacter jejuni. Infection and Immunity, 2012, 80, 2361-2370.	2.2	23
23	Mapping the Laminin Receptor Binding Domains of Neisseria meningitidis PorA and Haemophilus influenzae OmpP2. PLoS ONE, 2012, 7, e46233.	2.5	15
24	Carriage of Meningococci by University Students, United Kingdom. Emerging Infectious Diseases, 2011, 17, 1762-1763.	4.3	47
25	Persistence, Replacement, and Rapid Clonal Expansion of Meningococcal Carriage Isolates in a 2008 University Student Cohort. Journal of Clinical Microbiology, 2011, 49, 506-512.	3.9	64
26	The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiology, 2010, 10, 280.	3.3	69
27	The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Molecular Microbiology, 2010, 76, 605-615.	2.5	101
28	Human antibody responses to the meningococcal factor H binding protein (LP2086) during invasive disease, colonization and carriage. Vaccine, 2010, 28, 7667-7675.	3.8	18
29	AasP autotransporter protein of Actinobacillus pleuropneumoniae does not protect pigs against homologous challenge. Vaccine, 2009, 27, 5278-5283.	3.8	9
30	Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. Journal of Clinical Investigation, 2009, 119, 1638-1646.	8.2	248
31	Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Vaccine, 2008, 26, 1942-1954.	3.8	26
32	Functional Characterization of AasP, a Maturation Protease Autotransporter Protein of <i>Actinobacillus pleuropneumoniae </i> Infection and Immunity, 2008, 76, 5608-5614.	2.2	17
33	CapA, an Autotransporter Protein of Campylobacter jejuni , Mediates Association with Human Epithelial Cells and Colonization of the Chicken Gut. Journal of Bacteriology, 2007, 189, 1856-1865.	2.2	119
34	T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cellular Microbiology, 2007, 9, 463-478.	2.1	35
35	Characterization of the Campylobacter jejuni Heptosyltransferase II Gene, waaF, Provides Genetic Evidence that Extracellular Polysaccharide Is Lipid A Core Independent. Journal of Bacteriology, 2002, 184, 2100-2107.	2.2	51
36	Cloning, mutation and distribution of a putative lipopolysaccharide biosynthesis locus in Campylobacter jejuni. Microbiology (United Kingdom), 1999, 145, 379-388.	1.8	31