Hjh Brouwers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11601706/publications.pdf Version: 2024-02-01

HIH ROOUWEDS

#	Article	IF	CITATIONS
1	Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cement and Concrete Research, 2022, 151, 106649.	4.6	52
2	Enhancing the thermal performance of Class F fly ash-based geopolymer by sodalite. Construction and Building Materials, 2022, 314, 125574.	3.2	33
3	In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: The role of Al-O tetrahedra. Cement and Concrete Research, 2022, 153, 106697.	4.6	20
4	Modified cellulose nanofibers aerogels as a novel air filters; Synthesis and performance evaluation. International Journal of Biological Macromolecules, 2022, 203, 601-609.	3.6	22
5	Thermal and fire resistance of Class F fly ash based geopolymers – A review. Construction and Building Materials, 2022, 323, 126529.	3.2	61
6	Long-term performance of bio-based miscanthus mortar. Construction and Building Materials, 2022, 324, 126703.	3.2	8
7	Effects of ladle slag on Class F fly ash geopolymer: Reaction mechanism and high temperature behavior. Cement and Concrete Composites, 2022, 129, 104468.	4.6	39
8	Mechanical, absorptive and freeze–thaw properties of pervious concrete applying a bimodal aggregate packing model. Construction and Building Materials, 2022, 333, 127445.	3.2	10
9	Effect of highly dispersed colloidal olivine nano-silica on early age properties of ultra-high performance concrete. Cement and Concrete Composites, 2022, 131, 104564.	4.6	19
10	Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: From hydrates to carbonates. Cement and Concrete Research, 2022, 158, 106852.	4.6	13
11	Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: The role of aerogel particle size. Composites Part B: Engineering, 2022, 242, 110048.	5.9	53
12	Phosphorus removal from aqueous solutions by adsorptive concrete aggregates. Journal of Cleaner Production, 2021, 278, 123933.	4.6	31
13	Synergistic effect of steel fibres and coarse aggregates on impact properties of ultra-high performance fibre reinforced concrete. Cement and Concrete Composites, 2021, 115, 103866.	4.6	48
14	A facile manufacture of highly adsorptive aggregates using steel slag and porous expanded silica for phosphorus removal. Resources, Conservation and Recycling, 2021, 166, 105238.	5.3	25
15	Hydration of potassium citrate-activated BOF slag. Cement and Concrete Research, 2021, 140, 106291.	4.6	25
16	Municipal solid waste incineration bottom ash fines: Transformation into a minor additional constituent for cements. Resources, Conservation and Recycling, 2021, 166, 105354.	5.3	23
17	Valorization of converter steel slag into eco-friendly ultra-high performance concrete by ambient CO2 pre-treatment. Construction and Building Materials, 2021, 280, 122580.	3.2	40
18	The role of recycled waste glass incorporation on the carbonation behaviour of sodium carbonate activated slag mortar. Journal of Cleaner Production, 2021, 292, 126050.	4.6	17

#	Article	IF	CITATIONS
19	One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor. Construction and Building Materials, 2021, 293, 123289.	3.2	38
20	Phosphorus removal enhancement by porous adsorptive mortar using miscanthus and steel slag for highly adsorptive concrete. Construction and Building Materials, 2021, 295, 123686.	3.2	4
21	Effects of carbonation on the retention of heavy metals in chemically activated BOF slag pastes. Cement and Concrete Research, 2021, 148, 106534.	4.6	15
22	Development of cement-free bio-based cold-bonded lightweight aggregates (BCBLWAs) using steel slag and miscanthus powder via CO2 curing. Journal of Cleaner Production, 2021, 322, 129105.	4.6	16
23	On the optimization of BOF slag hydration kinetics. Cement and Concrete Composites, 2021, 124, 104262.	4.6	12
24	Influence of short-term degradation on coir in natural fibre-cement composites. Construction and Building Materials, 2021, 306, 124906.	3.2	25
25	The utilization of waste incineration filter dust (WIFD) in sodium carbonate activated slag mortars. Construction and Building Materials, 2021, 313, 125494.	3.2	3
26	Investigation of the hydrothermal treatment for maximizing the MSWI bottom ash content in fine lightweight aggregates. Construction and Building Materials, 2020, 230, 116947.	3.2	18
27	Investigation of local degradation in wood stands and its effect on cement wood composites. Construction and Building Materials, 2020, 231, 117201.	3.2	10
28	Compositional modelling and crushing behaviour of MSWI bottom ash material classes. Waste Management, 2020, 101, 268-282.	3.7	15
29	Chemical speciation, distribution and leaching behavior of chlorides from municipal solid waste incineration bottom ash. Chemosphere, 2020, 241, 124985.	4.2	33
30	Surface modification of cellulose nanofiber aerogels using phthalimide. Polymer Composites, 2020, 41, 219-226.	2.3	17
31	A nonlinear rate-dependent model for predicting the depth of penetration in ultra-high performance fiber reinforced concrete (UHPFRC). Cement and Concrete Composites, 2020, 106, 103451.	4.6	10
32	Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance. International Journal of Impact Engineering, 2020, 136, 103434.	2.4	66
33	Valorization of waste baby diapers in concrete. Resources, Conservation and Recycling, 2020, 153, 104548.	5.3	20
34	Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Construction and Building Materials, 2020, 231, 117121.	3.2	48
35	Functionally graded ultra-high performance cementitious composite with enhanced impact properties. Composites Part B: Engineering, 2020, 183, 107680.	5.9	69
36	A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers, 2020, 230, 115571.	5.1	52

#	Article	IF	CITATIONS
37	Development of water-resisting mortar by incorporation of functionalized waste incineration ashes. Journal of Cleaner Production, 2020, 249, 119341.	4.6	18
38	Effect of hydrophobicity on autogenous shrinkage and carbonation of alkali activated slag. Construction and Building Materials, 2020, 264, 120665.	3.2	30
39	Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cement and Concrete Composites, 2020, 114, 103829.	4.6	62
40	Self-cleaning and air purification performance of Portland cement paste with low dosages of nanodispersed TiO2 coatings. Construction and Building Materials, 2020, 263, 120558.	3.2	19
41	Valorization of bottom ash fines by surface functionalization to reduce leaching of harmful contaminants. Journal of Environmental Management, 2020, 271, 110884.	3.8	8
42	Enhancing the low-velocity impact resistance of ultra-high performance concrete by an optimized layered-structure concept. Composites Part B: Engineering, 2020, 200, 108221.	5.9	29
43	Evaluation of municipal solid waste incineration filter cake as supplementary cementitious material. Construction and Building Materials, 2020, 250, 118833.	3.2	5
44	Nanodispersed TiO2 hydrosol modified Portland cement paste: The underlying role of hydration on self-cleaning mechanisms. Cement and Concrete Research, 2020, 136, 106156.	4.6	44
45	Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres. Results in Engineering, 2020, 7, 100150.	2.2	29
46	The recycling potential of wood waste into wood-wool/cement composite. Construction and Building Materials, 2020, 260, 119786.	3.2	57
47	Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete. Construction and Building Materials, 2020, 242, 118112.	3.2	96
48	A silica aerogel synthesized from olivine and its application as a photocatalytic support. Construction and Building Materials, 2020, 248, 118709.	3.2	24
49	Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends. Construction and Building Materials, 2020, 250, 118865.	3.2	31
50	Numerical investigation on ballistic performance of coarse-aggregated layered UHPFRC. Construction and Building Materials, 2020, 250, 118867.	3.2	22
51	Resistance of multi-layered UHPFRC against in-service projectile: Experimental investigation and modelling prediction. Composite Structures, 2020, 244, 112295.	3.1	13
52	Recycling and utilization of high volume converter steel slag into CO2 activated mortars – The role of slag particle size. Resources, Conservation and Recycling, 2020, 160, 104883.	5.3	53
53	Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortars. Journal of Cleaner Production, 2019, 235, 461-472.	4.6	39
54	Effect of surface treatment of apricot shell on the performance of lightweight bio-concrete. Construction and Building Materials, 2019, 229, 116859.	3.2	17

#	Article	IF	CITATIONS
55	Conceptual design and performance evaluation of two-stage ultra-low binder ultra-high performance concrete. Cement and Concrete Research, 2019, 125, 105858.	4.6	48
56	Development and properties evaluation of sustainable ultra-high performance pastes with quaternary blends. Journal of Cleaner Production, 2019, 240, 118124.	4.6	33
57	NOx degradation by photocatalytic mortars: The underlying role of the CH and C-S-H carbonation. Cement and Concrete Research, 2019, 125, 105805.	4.6	35
58	Waterglass impregnation of municipal solid waste incineration bottom ash applied as sand replacement in mortars. Waste Management, 2019, 86, 87-96.	3.7	10
59	In-depth mineralogical quantification of MSWI bottom ash phases and their association with potentially toxic elements. Waste Management, 2019, 87, 1-12.	3.7	64
60	The immobilization of potentially toxic elements due to incineration and weathering of bottom ash fines. Journal of Hazardous Materials, 2019, 379, 120798.	6.5	30
61	Properties of multifunctional lightweight mortars containing zeolite and natural fibers. Journal of Sustainable Cement-Based Materials, 2019, 8, 214-227.	1.7	13
62	Enhancing flexural performance of ultra-high performance concrete by an optimized layered-structure concept. Composites Part B: Engineering, 2019, 171, 154-165.	5.9	33
63	Predicting the rate effects on hooked-end fiber pullout performance from Ultra-High Performance Concrete (UHPC). Cement and Concrete Research, 2019, 120, 164-175.	4.6	47
64	Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. Journal of Environmental Management, 2019, 235, 480-488.	3.8	51
65	Influence of synthesis conditions on the properties of photocatalytic titania-silica composites. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 25-32.	2.0	37
66	Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Construction and Building Materials, 2019, 202, 574-588.	3.2	52
67	MSWI bottom ash as binder replacement in wood cement composites. Construction and Building Materials, 2019, 196, 672-680.	3.2	25
68	Novel low temperature synthesis of sodium silicate and ordered mesoporous silica from incineration bottom ash. Journal of Cleaner Production, 2019, 211, 874-883.	4.6	66
69	Ionic interaction and liquid absorption by wood in lignocellulose inorganic mineral binder composites. Journal of Cleaner Production, 2019, 206, 808-818.	4.6	3
70	Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. Journal of Cleaner Production, 2019, 207, 866-874.	4.6	73
71	Influence of the spruce strands hygroscopic behaviour on the performances of wood-cement composites. Construction and Building Materials, 2018, 166, 522-530.	3.2	18
72	The durability and environmental properties of self-compacting concrete incorporating cold bonded lightweight aggregates produced from combined industrial solid wastes. Construction and Building Materials, 2018, 167, 271-285.	3.2	55

#	Article	IF	CITATIONS
73	Effect of the morphology and pore structure of porous building materials on photocatalytic oxidation of air pollutants. Applied Catalysis B: Environmental, 2018, 227, 123-131.	10.8	50
74	Relationship between the particle size and dosage of LDHs and concrete resistance against chloride ingress. Cement and Concrete Research, 2018, 105, 81-90.	4.6	98
75	Sulfuric acid resistance of one-part alkali-activated mortars. Cement and Concrete Research, 2018, 109, 54-63.	4.6	105
76	Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortar. Construction and Building Materials, 2018, 171, 232-242.	3.2	35
77	Pore structure development of silica particles below the isoelectric point. Microporous and Mesoporous Materials, 2018, 267, 257-264.	2.2	7
78	Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC). Construction and Building Materials, 2018, 170, 649-659.	3.2	169
79	Evaluation of the influence of mechanical activation on physical and chemical properties of municipal solid waste incineration sludge. Journal of Environmental Management, 2018, 216, 133-144.	3.8	14
80	Modelling and optimization of the sound absorption of wood-wool cement boards. Applied Acoustics, 2018, 129, 144-154.	1.7	27
81	Field study of NOx degradation by a mineral-based air purifying paint. Building and Environment, 2018, 142, 70-82.	3.0	33
82	Influence of hydrothermal treatment on the mechanical and environmental performances of mortars including MSWI bottom ash. Waste Management, 2018, 78, 639-648.	3.7	20
83	The hydration and microstructure characteristics of cement pastes with high volume organic-contaminated waste glass powder. Construction and Building Materials, 2018, 187, 1177-1189.	3.2	19
84	Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International, 2017, 43, 6039-6047.	2.3	51
85	Evaluation of slag characteristics on the reaction kinetics and mechanical properties of Na 2 CO 3 activated slag. Construction and Building Materials, 2017, 131, 334-346.	3.2	50
86	A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants. Waste Management, 2017, 67, 181-192.	3.7	53
87	Effect of saccharides on the hydration of ordinary Portland cement. Construction and Building Materials, 2017, 150, 268-275.	3.2	84
88	Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars. Construction and Building Materials, 2017, 143, 48-60.	3.2	37
89	Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) and industrial powder wastes by cold-bonding pelletization. Waste Management, 2017, 62, 125-138.	3.7	53
90	Time-dependent characterization of Na 2 CO 3 activated slag. Cement and Concrete Composites, 2017, 84, 188-197.	4.6	56

#	Article	IF	CITATIONS
91	Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus. Construction and Building Materials, 2017, 157, 839-851.	3.2	52
92	Effect of PCE-type superplasticizer on early-age behaviour of ultra-high performance concrete (UHPC). Construction and Building Materials, 2017, 153, 740-750.	3.2	100
93	Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation. Construction and Building Materials, 2017, 153, 459-468.	3.2	49
94	Employing cold bonded pelletization to produce lightweight aggregates from incineration fine bottom ash. Journal of Cleaner Production, 2017, 165, 1371-1384.	4.6	80
95	Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites. Ceramics International, 2017, 43, 12408-12419.	2.3	141
96	Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: Reaction kinetics, gel structure and carbon footprint. Cement and Concrete Research, 2017, 100, 129-139.	4.6	64
97	Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. Journal of Cleaner Production, 2017, 164, 410-419.	4.6	133
98	Sustainable development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards to an optimized concrete matrix and efficient fibre application. Journal of Cleaner Production, 2017, 162, 220-233.	4.6	64
99	8. Chemistry, design and application of hybrid alkali activated binders. , 2017, , 253-284.		0
100	Nanotechnologies for sustainable construction. , 2016, , 55-78.		21
101	Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute. Cement and Concrete Composites, 2016, 70, 194-205.	4.6	100
102	The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites. Thermochimica Acta, 2016, 635, 41-58.	1.2	58
103	Photocatalytic coating for indoor air purification: Synergetic effect of photocatalyst dosage and silica modification. Chemical Engineering Journal, 2016, 306, 942-952.	6.6	36
104	Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials, 2016, 124, 961-966.	3.2	153
105	Utilization of waste glass in translucent and photocatalytic concrete. Construction and Building Materials, 2016, 128, 436-448.	3.2	73
106	Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Construction and Building Materials, 2016, 119, 175-184.	3.2	105
107	Impact resistance of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) under pendulum impact loadings. Construction and Building Materials, 2016, 107, 203-215.	3.2	103
108	Contaminated biomass fly ashes – Characterization and treatment optimization for reuse as building materials. Waste Management, 2016, 49, 96-109.	3.7	43

#	Article	IF	CITATIONS
109	High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete. Waste Management, 2016, 49, 83-95.	3.7	89
110	Influence of olivine nano-silica on hydration and performance of oil-well cement slurries. Materials and Design, 2016, 96, 162-170.	3.3	52
111	Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact. Cement and Concrete Composites, 2016, 68, 109-122.	4.6	101
112	Visible light TiO2 photocatalysts assessment for air decontamination. Chemical Engineering Research and Design, 2016, 101, 124-133.	2.7	26
113	Multi-cycle and multi-scale cellular automata for hydration simulation (of Portland-cement). Computational Materials Science, 2016, 111, 116-124.	1.4	4
114	Design and performance evaluation of ultra-lightweight geopolymer concrete. Materials and Design, 2016, 89, 516-526.	3.3	137
115	Development of Ultra-Lightweight Fibre Reinforced Concrete applying expanded waste glass. Journal of Cleaner Production, 2016, 112, 690-701.	4.6	90
116	Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Construction and Building Materials, 2015, 83, 77-94.	3.2	163
117	Design and performance evaluation of the functional coating for air purification under indoor conditions. Applied Catalysis B: Environmental, 2015, 168-169, 77-86.	10.8	19
118	Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials, 2015, 80, 105-115.	3.2	276
119	Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres. Construction and Building Materials, 2015, 79, 273-282.	3.2	138
120	Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 2015, 61, 18-28.	4.6	114
121	Properties of alkali activated slag–fly ash blends with limestone addition. Cement and Concrete Composites, 2015, 59, 119-128.	4.6	179
122	Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method. Materials and Design, 2015, 86, 878-886.	3.3	60
123	Determination of the chloride diffusion coefficient in blended cement mortars. Cement and Concrete Research, 2015, 78, 190-199.	4.6	90
124	Characterization of alkali activated slag–fly ash blends containing nano-silica. Construction and Building Materials, 2015, 98, 397-406.	3.2	159
125	The kinetics of the olivine dissolution under the extreme conditions of nano-silica production. Applied Geochemistry, 2015, 52, 1-15.	1.4	23
126	Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mixtures uses. Cement and Concrete Composites, 2015, 55, 383-394.	4.6	436

#	Article	IF	CITATIONS
127	SCC modification by use of amorphous nano-silica. Cement and Concrete Composites, 2014, 45, 69-81.	4.6	201
128	Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research, 2014, 56, 29-39.	4.6	670
129	A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 2014, 60, 98-110.	3.2	124
130	Activation of liberated concrete fines and their application in mortars. Construction and Building Materials, 2014, 50, 1-12.	3.2	92
131	Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling. Construction and Building Materials, 2014, 68, 158-171.	3.2	141
132	Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures. Cement and Concrete Composites, 2014, 49, 111-126.	4.6	60
133	Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation. Materials Chemistry and Physics, 2014, 148, 208-213.	2.0	43
134	Precipitation synthesis of WO3 for NOx removal using PEG as template. Ceramics International, 2014, 40, 12123-12128.	2.3	38
135	Modelling of chloride binding related to hydration products in slag-blended cements. Construction and Building Materials, 2014, 64, 421-430.	3.2	60
136	Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Construction and Building Materials, 2014, 65, 140-150.	3.2	433
137	Development of cement-based lightweight composites – Part 1: Mix design methodology and hardened properties. Cement and Concrete Composites, 2013, 44, 17-29.	4.6	123
138	The apparent and effective chloride migration coefficients obtained in migration tests. Cement and Concrete Research, 2013, 48, 116-127.	4.6	70
139	The influence of process conditions and Ostwald ripening on the specific surface area of olivine nano-silica. Microporous and Mesoporous Materials, 2013, 181, 254-261.	2.2	47
140	Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM). Cement and Concrete Research, 2013, 54, 161-179.	4.6	17
141	Development of cement-based lightweight composites – Part 2: Durability-related properties. Cement and Concrete Composites, 2013, 44, 30-40.	4.6	45
142	Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement and Concrete Composites, 2013, 44, 77-92.	4.6	92
143	A cellular automata approach to chemical reactions; 1 Reaction controlled systems. Chemical Engineering Journal, 2013, 228, 172-178.	6.6	13
144	Full scale demonstration of air-purifying pavement. Journal of Hazardous Materials, 2013, 254-255, 406-414.	6.5	131

#	Article	IF	CITATIONS
145	Properties of various size fractions of crushed concrete related to process conditions and re-use. Cement and Concrete Research, 2013, 52, 11-21.	4.6	63
146	Photocatalytic removal of nitric oxide by Bi2Mo3O12 prepared by co-precipitation method. Applied Catalysis A: General, 2013, 468, 322-326.	2.2	60
147	Design of a Novel Photocatalytic Gypsum Plaster: with the Indoor Air Purification Property. Advanced Materials Research, 2013, 651, 751-756.	0.3	5
148	The properties of amorphous nano-silica synthesized by the dissolution of olivine. Chemical Engineering Journal, 2012, 211-212, 112-121.	6.6	69
149	Development of a self-compacting gypsum-based lightweight composite. Cement and Concrete Composites, 2012, 34, 1033-1043.	4.6	62
150	Paste models for hydrating calcium sulfates, using the approach by Powers and Brownyard. Construction and Building Materials, 2012, 36, 1044-1047.	3.2	12
151	Chloride binding related to hydration products. Cement and Concrete Research, 2012, 42, 282-290.	4.6	286
152	Water demand of amorphous nano silica and its impact on the workability of cement paste. Cement and Concrete Research, 2012, 42, 344-357.	4.6	231
153	On the early-age behavior of zero-slump concrete. Cement and Concrete Research, 2012, 42, 501-510.	4.6	33
154	Influence of the applied voltage on the Rapid Chloride Migration (RCM) test. Cement and Concrete Research, 2012, 42, 1072-1082.	4.6	65
155	Hydration of mineral shrinkage-compensating admixture for concrete: An experimental and numerical study. Construction and Building Materials, 2012, 26, 670-676.	3.2	23
156	RCM: A new model accounting for the non-linear chloride binding isotherm and the non-equilibrium conditions between the free- and bound-chloride concentrations. Construction and Building Materials, 2012, 27, 293-304.	3.2	67
157	Heterogeneous Photocatalysis Applied to Indoor Building Material: Towards an Improved Indoor Air Quality. Advanced Materials Research, 2011, 255-260, 2836-2840.	0.3	2
158	Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catalysis Today, 2011, 161, 175-180.	2.2	126
159	Microstructure and mechanical properties of β-hemihydrate produced gypsum: An insight from its hydration process. Construction and Building Materials, 2011, 25, 3149-3157.	3.2	101
160	Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in Concrete floors and to save energy in Dutch houses. Solar Energy, 2011, 85, 1007-1020.	2.9	198
161	NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Applied Catalysis B: Environmental, 2010, 95, 245-254.	10.8	178
162	Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study. Applied Catalysis B: Environmental, 2010, 99, 58-65.	10.8	70

#	Article	IF	CITATIONS
163	Modelling and experimental study of the NOx photocatalytic degradation employing concrete pavement with titanium dioxide. Catalysis Today, 2010, 151, 71-76.	2.2	74
164	Photocatalytic degradation of air pollutants — From modeling to large scale application. Cement and Concrete Research, 2010, 40, 313-320.	4.6	96
165	Alkali binding in hydrated Portland cement paste. Cement and Concrete Research, 2010, 40, 716-722.	4.6	80
166	The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials. Cement and Concrete Composites, 2009, 31, 731-743.	4.6	397
167	Flow analysis of water–powder mixtures: Application to specific surface area and shape factor. Cement and Concrete Composites, 2009, 31, 39-59.	4.6	123
168	Production of non-constructive concrete blocks using contaminated soil. Construction and Building Materials, 2009, 23, 3564-3578.	3.2	8
169	Experimental study of photocatalytic concrete products for air purification. Building and Environment, 2009, 44, 2463-2474.	3.0	297
170	Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Applied Catalysis B: Environmental, 2009, 92, 454-461.	10.8	174
171	Comparison of observed and simulated cement microstructure using spatial correlation functions. Cement and Concrete Composites, 2009, 31, 637-646.	4.6	11
172	Mitigating the effects of system resolution on computer simulation of Portland cement hydration. Cement and Concrete Composites, 2008, 30, 779-787.	4.6	20
173	A new mix design concept for earth-moist concrete: A theoretical and experimental study. Cement and Concrete Research, 2008, 38, 1246-1259.	4.6	137
174	Use of cement and quicklime to accelerate ripening and immobilize contaminated dredging sludge. Journal of Hazardous Materials, 2007, 145, 8-16.	6.5	13
175	Steam stripping of the unsaturated zone of contaminated sub-soils: The effect of diffusion/dispersion in the start-up phase. Journal of Contaminant Hydrology, 2006, 83, 1-26.	1.6	3
176	The work of Powers and Brownyard revisited: Part 2. Cement and Concrete Research, 2005, 35, 1922-1936.	4.6	72
177	Self-Compacting Concrete: Theoretical and experimental study. Cement and Concrete Research, 2005, 35, 2116-2136.	4.6	387
178	The work of Powers and Brownyard revisited: Part 1. Cement and Concrete Research, 2004, 34, 1697-1716.	4.6	187
179	Alkali concentrations of pore solution in hydrating OPC. Cement and Concrete Research, 2003, 33, 191-196.	4.6	69
180	Analytical Model for Removal of a Uniformly Distributed Single-Component NAPL Under Nonequilibrium Conditions. Ground Water Monitoring and Remediation, 2001, 21, 162-171.	0.6	1

#	Article	IF	CITATIONS
181	Modelling the effects of waste components on cement hydration. Waste Management, 2001, 21, 279-284.	3.7	15
182	Study of the relation between hydrated Portland cement composition and leaching resistance. Cement and Concrete Research, 1998, 28, 815-828.	4.6	31
183	Leaching models for multiple immersed materials and for granular materials flushed in a column. Journal of Hazardous Materials, 1997, 53, 1-17.	6.5	10
184	Heat transfer, condensation and fog formation in crossflow plastic heat exchangers. International Journal of Heat and Mass Transfer, 1996, 39, 391-405.	2.5	32
185	Comments on "Effect of humid air flow rate on the filmwise condensation inside a vertical cooled pipe: numerical and experimental study― International Journal of Heat and Mass Transfer, 1995, 38, 2139-2140.	2.5	1
186	Comments on "Transition from transpiration to film cooling― International Journal of Heat and Mass Transfer, 1995, 38, 183-184.	2.5	4
187	Heat transfer between a fluid-saturated porous medium and a permeable wall with fluid injection or withdrawal. International Journal of Heat and Mass Transfer, 1994, 37, 989-996.	2.5	12
188	The combined effects of fog formation and Stefan flow on nickel and iron evaporation into helium. International Journal of Heat and Mass Transfer, 1993, 36, 241-243.	2.5	2
189	Film models for transport phenomena with fog formation: the classical film model. International Journal of Heat and Mass Transfer, 1992, 35, 1-11.	2.5	35
190	Film models for transport phenomena with fog formation: the fog film model. International Journal of Heat and Mass Transfer, 1992, 35, 13-28.	2.5	14
191	An analysis of multiple superheated and saturated regions in a stagnant binary film. International Journal of Heat and Mass Transfer, 1992, 35, 1838-1841.	2.5	1
192	The film model applied to free convection over a vertical plate with blowing or suction. International Journal of Heat and Mass Transfer, 1992, 35, 1841-1844.	2.5	10
193	A film model for heat and mass transfer with fog formation. Chemical Engineering Science, 1992, 47, 3023-3036.	1.9	39
194	An improved tangency condition for fog formation in cooler-condensers. International Journal of Heat and Mass Transfer, 1991, 34, 2387-2394.	2.5	30
195	Design of a Novel Calcium Sulfate-Based Lightweight Composite: Towards Excellent Thermal Properties. Advanced Materials Research, 0, 651, 745-750.	0.3	2
196	Effects of Inclination Angle on Pullout Performance of Hooked End Fiber Embedded in UHPC. Key Engineering Materials, 0, 812, 60-65.	0.4	2