Mat Uzir Bin Wahit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160135/publications.pdf Version: 2024-02-01

MAT HZID RIN MAHIT

#	Article	IF	CITATIONS
1	Development of Regenerated Cellulose/Citric Acid Films with Ionic Liquids. Journal of Polymers and the Environment, 2022, 30, 613-621.	2.4	12
2	BiodegradableÂpolymer blendsÂandÂcompositesÂfor biomedical applications. , 2022, , 573-590.		2
3	Silk fibroinâ€based films in food packaging applications: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2253-2273.	5.9	20
4	The effect of kenaf loading on the mechanical properties of kenaf-reinforced recycled poly(ethylene) Tj ETQq0 0 0 959-964.	0.9 rgBT /Ove	erlock 10 Tf 5 10
5	Rheological Behavior of Recycled Plastics, Blends and Composites. Composites Science and Technology, 2021, , 193-212.	0.4	0
6	Mechanical, Thermal, Void Fraction and Water Absorption of Silane Surface Modified Silk Fiber Reinforced Epoxy Composites. Polymer-Plastics Technology and Materials, 2020, 59, 1987-2002.	0.6	4
7	Bio-based composites from plant based precursors and hydroxyapatite with shape-memory capability. Composites Science and Technology, 2020, 194, 108138.	3.8	21
8	Biocompatible regenerated cellulose/halloysite nanocomposite fibers. Polymer Engineering and Science, 2020, 60, 1169-1176.	1.5	11
9	Polypropylene/Graphene Nanocomposites: Effects of GNP Loading and Compatibilizers on the Mechanical and Thermal Properties. Materials, 2019, 12, 3924.	1.3	29
10	Structural and characterization studies of insoluble thai bombyx mori silk fibroin films. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 18-22.	0.4	6
11	Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene. Materials Today: Proceedings, 2018, 5, 21879-21887.	0.9	8
12	Biodegradable poly(xylitol sebacate dodecanoate)/nano-hydroxyapatite composite for potential used in biomedical applications. AIP Conference Proceedings, 2018, , .	0.3	1
13	Adhesive Bonding of Thermoplastic Polyurethane with Metallic Wire. Advanced Science Letters, 2018, 24, 4045-4049.	0.2	1
14	Materials for food packaging applications based on bio-based polymer nanocomposites. Journal of Thermoplastic Composite Materials, 2017, 30, 143-173.	2.6	123
15	Graphene reinforced regenerated cellulose nanocomposite fibers prepared by lyocell process. Polymer Composites, 2017, 38, E81.	2.3	15
16	Multifunctional shape-memory foams with highly tunable properties via organo-phase cryo-polymerization. Journal of Materials Chemistry A, 2017, 5, 9793-9800.	5.2	19
17	Bionanocomposite regenerated cellulose/single-walled carbon nanotube films prepared using ionic liquid solvent. Cellulose, 2017, 24, 811-822.	2.4	18
18	Development of Ethylene-Vinyl Acetate Composites Reinforced with Graphene Platelets. Macromolecular Materials and Engineering, 2017, 302, 1600260.	1.7	33

MAT UZIR BIN WAHIT

#	Article	IF	CITATIONS
19	Kappa-carrageenan/halloysite nanocomposite hydrogels as potential drug delivery systems. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 426-434.	2.7	48
20	Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 2016, 37, 861-869.	2.3	37
21	Polyol-based biodegradable polyesters: a short review. Reviews in Chemical Engineering, 2016, 32, .	2.3	20
22	Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate. Journal of Materials Science, 2015, 50, 1228-1236.	1.7	10
23	Bionanocomposites of Regenerated Cellulose Reinforced with Halloysite Nanoclay and Graphene Nanoplatelets: Characterizations and Properties. Advanced Structured Materials, 2015, , 295-321.	0.3	3
24	Effects of ENR and OMMT on barrier and tensile properties of LDPE nanocomposite film. Iranian Polymer Journal (English Edition), 2015, 24, 367-378.	1.3	11
25	Effect of Mica Content on Mechanical Properties of Regenerated Cellulose Nanocomposites via Ionic Liquids. Advanced Materials Research, 2015, 1112, 393-396.	0.3	Ο
26	Epoxidized natural rubber toughened polyamide 6/organically modified montmorillonite nanocomposites. Journal of Thermoplastic Composite Materials, 2014, 27, 395-412.	2.6	7
27	Epoxidized natural rubber-50 toughened polyamide 6 nanocomposites. Journal of Elastomers and Plastics, 2014, 46, 269-283.	0.7	8
28	Preparation and Characterization of Organically Modified Montmorillonite-Filled High Density Polyethylene/Hydroxyapatite Nanocomposites for Biomedical Applications. Polymer-Plastics Technology and Engineering, 2014, 53, 790-800.	1.9	11
29	Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydrate Polymers, 2014, 99, 91-97.	5.1	43
30	Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydrate Polymers, 2014, 106, 326-334.	5.1	48
31	Processing of a multiâ€layer polyetheretherketone composite for use in acetabular cup prosthesis. Journal of Applied Polymer Science, 2014, 131, .	1.3	Ο
32	Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polymer Testing, 2014, 33, 121-130.	2.3	56
33	The effect of organoclay contents on morphological characterization, mechanical and thermal properties of epoxidized natural rubber-50 toughened polyamide 6 nanocomposites. Journal of Polymer Engineering, 2014, 34, 59-68.	0.6	8
34	Regenerated cellulose/β-cyclodextrin scaffold prepared using ionic liquid. Materials Letters, 2014, 135, 210-213.	1.3	23
35	Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fibers and Polymers, 2014, 15, 1531-1538.	1.1	27
36	Epoxidized natural rubber–toughened polypropylene/organically modified montmorillonite nanocomposites. Journal of Thermoplastic Composite Materials, 2014, 27, 233-250.	2.6	16

#	Article	IF	CITATIONS
37	Effect of fiber reinforcement on mechanical and thermal properties of poly(É>-caprolactone)/poly(lactic acid) blend composites. Fibers and Polymers, 2014, 15, 574-582.	1.1	15
38	A novel poly(xylitol-co-dodecanedioate)/hydroxyapatite composite with shape-memory behaviour. Materials Letters, 2014, 126, 105-108.	1.3	20
39	Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer, 2014, 55, 3130-3138.	1.8	33
40	Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene) Tj ETQq0 0 0 rgBT μ	Overlock 3	10 Tf 50 622 103
41	Regenerated cellulose/epoxidized natural rubber blend film. Materials Letters, 2013, 111, 221-224.	1.3	31
42	Maleated High Density Polyethylene Compatibilized High Density Polyethylene/Hydroxyapatite Composites for Biomedical Applications: Properties and Characterization. Polymer-Plastics Technology and Engineering, 2013, 52, 774-782.	1.9	20
43	Comparative studies of mechanical properties of poly(É›-caprolactone) and poly(lactic acid) blends reinforced with natural fibers. Composite Interfaces, 2013, 20, 459-467.	1.3	14
44	Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. International Journal of Biological Macromolecules, 2013, 58, 133-139.	3.6	59
45	Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Materials Chemistry and Physics, 2013, 141, 936-943.	2.0	53
46	Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends. Journal of Polymer Engineering, 2013, 33, 599-614.	0.6	23
47	Preparation, characterization, and mechanical properties of poly(<i>ε</i> â€caprolactone)/polylactic acid blend composites. Polymer Composites, 2013, 34, 763-768.	2.3	28
48	A Facile Approach to Prepare Regenerated Cellulose/Graphene Nanoplatelets Nanocomposite Using Room-Temperature Ionic Liquid. Journal of Nanoscience and Nanotechnology, 2012, 12, 5233-5239.	0.9	38
49	Toughening of Polylactic Acid Nanocomposites: A Short Review. Polymer-Plastics Technology and Engineering, 2012, 51, 175-192.	1.9	97
50	Ethylene Copolymer Toughened Polylactic Acid Nanocomposites. Polymer-Plastics Technology and Engineering, 2012, 51, 19-27.	1.9	27
51	Ageing and degradation mechanism of linear low density polyethylene-natural rubber composites due to partial discharge. , 2012, , .		7
52	Influence of natural fibers on the mechanical properties and biodegradation of poly(lactic acid) and poly(εâ€caprolactone) composites: A review. Polymer Composites, 2012, 33, 1045-1053.	2.3	69
53	Novel epoxidized natural rubber toughened polyamide 6/halloysite nanotubes nanocomposites. Journal of Polymer Research, 2012, 19, 1.	1.2	19
54	Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydrate Polymers, 2012, 88, 1251-1257.	5.1	126

MAT UZIR BIN WAHIT

#	Article	IF	CITATIONS
55	Aging of Toughened Polylactic Acid Nanocomposites: Water Absorption, Hygrothermal Degradation and Soil Burial Analysis. Journal of Polymers and the Environment, 2011, 19, 863-875.	2.4	44
56	Polypropylene/organically modified Sabah montmorillonite nanocomposites: Surface modification and nanocomposites characterization. Polymer Composites, 2011, 32, 1927-1936.	2.3	18
57	Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties. Materials & Design, 2010, 31, 3289-3298.	5.1	160
58	Mechanical, Thermal and Electrical Properties of Ethylene Vinyl Acetate Irradiated by an Electron-Beam. Polymer-Plastics Technology and Engineering, 2010, 49, 589-594.	1.9	30
59	Mechanical, Thermal, and Morphological Properties of Polylactic Acid/Linear Low Density Polyethylene Blends. Journal of Elastomers and Plastics, 2010, 42, 223-239.	0.7	65
60	Effect of Compatibilizer Type on Properties of 70:30 Polyamide 6/Polypropylene/MMT Nanocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2007, 56, 893-909.	1.8	13
61	Preparation and Characterisation of Polyethylene-Octene Grafted Maleic Anhydride-Toughened 70:30 PA6/PP/MMT Nanocomposites. Polymers and Polymer Composites, 2007, 15, 217-227.	1.0	7
62	Maleic Anhydride Polyethylene Octene Elastomer Toughened Polyamide 6/Polypropylene Nanocomposites: Mechanical and Morphological Properties. Macromolecular Symposia, 2006, 239, 182-191.	0.4	22
63	Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly(ethylene-co-octene). Polymer International, 2006, 55, 204-215.	1.6	73
64	The Effect of Rubber Type and Rubber Functionality on the Morphological and Mechanical Properties of Rubber-toughened Polyamide 6/Polypropylene Nanocomposites. Polymer Journal, 2006, 38, 767-780.	1.3	16
65	Mechanical and morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2. Polymer Testing, 2003, 22, 281-290.	2.3	74
66	Impact Test and Bioactivity Properties of Polycaprolactone (PCL) by Addition of Nano-Montmorillonite (MMT) and Hydroxyapatite (HA). Applied Mechanics and Materials, 0, 446-447, 1129-1133.	0.2	2