Bang-Bon Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D multi-scale residual fully convolutional neural network for segmentation of extremely large-sized kidney tumor. Computer Methods and Programs in Biomedicine, 2022, 215, 106616.	4.7	12
2	Association of Diabetes and Hypertension With Brain Structural Integrity and Cognition in the Boston Puerto Rican Health Study Cohort. Neurology, 2022, 98, .	1.1	12
3	Brain signatures based on structural <scp>MRI</scp> : Classification for <scp>MCI</scp> , <scp>PMCI</scp> , and <scp>AD</scp> . Human Brain Mapping, 2022, 43, 2845-2860.	3.6	7
4	Bowel Health, Brain Age, Brain Volume and Cognitive Function in the Boston Puerto Rican Health Study. Current Developments in Nutrition, 2022, 6, 15.	0.3	0
5	Defining the optimal target for anterior thalamic deep brain stimulation in patients with drug-refractory epilepsy. Journal of Neurosurgery, 2021, 134, 1054-1063.	1.6	9
6	Brain–Immune Interactions as the Basis of Gulf War Illness: Clinical Assessment and Deployment Profile of 1990–1991 Gulf War Veterans in the Gulf War Illness Consortium (GWIC) Multisite Case-Control Study. Brain Sciences, 2021, 11, 1132.	2.3	16
7	Boston biorepository, recruitment and integrative network (BBRAIN): A resource for the Gulf War Illness scientific community. Life Sciences, 2021, 284, 119903.	4.3	4
8	The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. Journal of Clinical Investigation, 2021, 131, .	8.2	27
9	Association of the tissue microstructural diffusivity and translocator protein PET in Gulf War Illness. Brain, Behavior, & Immunity - Health, 2021, 18, 100364.	2.5	2
10	Increased Functional Connectivity Within Intrinsic Neural Networks in Chronic Stroke Following Treatment with Red/Near-Infrared Transcranial Photobiomodulation: Case Series with Improved Naming in Aphasia. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38, 115-131.	1.4	44
11	Neuroimaging Markers for Studying Gulf-War Illness: Single-Subject Level Analytical Method Based on Machine Learning. Brain Sciences, 2020, 10, 884.	2.3	7
12	Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with chemical weapons exposure and mild traumatic brain injury. Brain, Behavior, and Immunity, 2020, 89, 281-290.	4.1	17
13	Hippocampal Resting-State Functional Connectivity Patterns are More Closely Associated with Severity of Subjective Memory Decline than Whole Hippocampal and Subfield Volumes. Cerebral Cortex Communications, 2020, 1, tgaa019.	1.6	9
14	Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion imaging in a rat model of Gulf War Illness. Brain, Behavior, and Immunity, 2018, 67, 42-46.	4.1	66
15	P3â€357: HIPPOCAMPAL VOLUME AND FUNCTIONAL CONNECTIVITY DIFFERENTIATE BETWEEN COGNITIVELY NORMAL INDIVIDUALS WITH AND WITHOUT SUBJECTIVE MEMORY COMPLAINTS. Alzheimer's and Dementia, 2018, 14, P1223.	0.8	0
16	ICâ€Pâ€174: HIPPOCAMPAL VOLUME AND FUNCTIONAL CONNECTIVITY DIFFERENTIATE BETWEEN COGNITIVELY NORMAL INDIVIDUALS WITH AND WITHOUT SUBJECTIVE MEMORY COMPLAINTS. Alzheimer's and Dementia, 2018, 14, P148.	0.8	0
17	Long-term effects of curcumin in the non-human primate brain. Brain Research Bulletin, 2018, 142, 88-95.	3.0	11
18	Age-related changes in structural connectivity are improved using subject-specific thresholding. Journal of Neuroscience Methods, 2017, 288, 45-56.	2.5	5

BANG-BON KOO

#	Article	IF	CITATIONS
19	Seed Location Impacts Whole-Brain Structural Network Comparisons between Healthy Elderly and Individuals with Alzheimer's Disease. Brain Sciences, 2017, 7, 37.	2.3	12
20	White matter damage in maintenance hemodialysis patients: a diffusion tensor imaging study. BMC Nephrology, 2017, 18, 213.	1.8	36
21	Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness. PLoS ONE, 2017, 12, e0173064.	2.5	40
22	Edited Magnetic Resonance Spectroscopy Detects an Age-Related Decline in Nonhuman Primate Brain GABA Levels. BioMed Research International, 2016, 2016, 1-7.	1.9	15
23	White Matter Change Revealed by Diffusion Tensor Imaging in Gliomas. Brain Tumor Research and Treatment, 2016, 4, 100.	1.0	14
24	IC-P-040: Using White Matter Seed Regions Produces Stronger and More Complex Structural Networks in Healthy Elderly Subjects and Subjects with Alzheimer's Disease. , 2016, 12, P35-P35.		0
25	P3â€264: Using White Matter Seed Regions Produces Stronger and More Complex Structural Networks in Healthy Elderly Subjects and Subjects with Alzheimer'S Disease. Alzheimer's and Dementia, 2016, 12, P933.	0.8	0
26	Comparison of ApoE-related brain connectivity differences in early MCI and normal aging populations: an fMRI study. Brain Imaging and Behavior, 2016, 10, 970-983.	2.1	28
27	Red/near-infrared light-emitting diode therapy for traumatic brain injury. Proceedings of SPIE, 2015, , .	0.8	1
28	Leptin Therapy Alters Appetite and Neural Responses to Food Stimuli in Brain Areas of Leptin-Sensitive Subjects Without Altering Brain Structure. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2529-E2538.	3.6	36
29	Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment. Journal of AAPOS, 2014, 18, 398-401.	0.3	29
30	Hippocampal network connections account for differences in memory performance in the middle-aged rhesus monkey. Hippocampus, 2013, 23, 1179-1188.	1.9	8
31	Clinical Prediction of Fall Risk and White Matter Abnormalities. Archives of Neurology, 2012, 69, 733-8.	4.5	28
32	Age-related effects on cortical thickness patterns of the Rhesus monkey brain. Neurobiology of Aging, 2012, 33, 200.e23-200.e31.	3.1	35
33	Comparison of diffusion tensor imaging and voxel-based morphometry to detect white matter damage in Alzheimer's disease. Journal of the Neurological Sciences, 2011, 302, 89-95.	0.6	24
34	Changes in Language Pathways in Patients with Temporal Lobe Epilepsy: Diffusion Tensor Imaging Analysis of the Uncinate and Arcuate Fasciculi. World Neurosurgery, 2011, 75, 509-516.	1.3	23
35	Sex differences in the temporal lobe white matter and the corpus callosum: a diffusion tensor tractography study. NeuroReport, 2010, 21, 73-77.	1.2	22
36	Computerâ€based morphometry of brain. International Journal of Imaging Systems and Technology, 2010, 20, 117-125.	4.1	1

BANG-BON KOO

#	Article	IF	CITATIONS
37	Quantitative mapping of diffusion characteristics under the cortical surface. Magnetic Resonance Imaging, 2010, 28, 1175-1182.	1.8	2
38	Thalamic changes in temporal lobe epilepsy with and without hippocampal sclerosis: A diffusion tensor imaging study. Epilepsy Research, 2010, 90, 21-27.	1.6	33
39	Groupâ€specific regional white matter abnormality revealed in diffusion tensor imaging of medial temporal lobe epilepsy without hippocampal sclerosis. Epilepsia, 2010, 51, 529-535.	5.1	37
40	A framework to analyze partial volume effect on gray matter mean diffusivity measurements. NeuroImage, 2009, 44, 136-144.	4.2	33
41	Assessing spatial probabilistic distributional differences in the common space between schizophrenics and normal controls based on a novel automated probabilistic pattern analysis method. International Journal of Imaging Systems and Technology, 2008, 18, 310-324.	4.1	0
42	P200 Diffusion tensor imaging in unilateral temporal lobe epilepsy with and without hippocampal sclerosis: analyzed by voxel-based morphometry. Clinical Neurophysiology, 2008, 119, S122.	1.5	0
43	Fully automatic hybrid registration method based on point feature detection without user intervention. , 2006, 6144, 852.		0
44	Representative brain selection using a group-specific tissue probability map. Magnetic Resonance Imaging, 2005, 23, 809-815.	1.8	2
45	Quantitative analysis of group-specific brain tissue probability map for schizophrenic patients. NeuroImage, 2005, 26, 502-512.	4.2	10