
Pierre Schaaf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160121/publications.pdf Version: 2024-02-01

DIEDDE SCHAAE

#	Article	IF	CITATIONS
1	Localized Enzyme-Assisted Self-Assembly of low molecular weight hydrogelators. Mechanism, applications and perspectives. Advances in Colloid and Interface Science, 2022, 304, 102660.	14.7	6
2	Non-Monotonous Enzyme-Assisted Self-Assembly Profiles Resulting from Reaction-Diffusion Processes in Host Gels. Journal of Colloid and Interface Science, 2022, 620, 234-241.	9.4	9
3	Supramolecular tripeptide self-assembly initiated at the surface of coacervates by polyelectrolyte exchange. Journal of Colloid and Interface Science, 2021, 588, 580-588.	9.4	10
4	Localized Enzyme-Assisted Self-Assembly in the Presence of Hyaluronic Acid for Hybrid Supramolecular Hydrogel Coating. Polymers, 2021, 13, 1793.	4.5	10
5	Surface Triggered Self-Assembly of Fmoc-Tripeptide as an Antibacterial Coating. Frontiers in Bioengineering and Biotechnology, 2020, 8, 938.	4.1	19
6	Reversible Soft Mechanochemical Control of Biaryl Conformations through Crosslinking in a 3D Macromolecular Network. Angewandte Chemie, 2020, 132, 23483-23490.	2.0	3
7	Reversible Soft Mechanochemical Control of Biaryl Conformations through Crosslinking in a 3D Macromolecular Network. Angewandte Chemie - International Edition, 2020, 59, 23283-23290.	13.8	7
8	Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angewandte Chemie, 2020, 132, 14666-14671.	2.0	4
9	Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angewandte Chemie - International Edition, 2020, 59, 14558-14563.	13.8	21
10	Enzyme assisted peptide self-assemblies trigger cell adhesion in high density oxime based host gels. Journal of Materials Chemistry B, 2020, 8, 4419-4427.	5.8	15
11	Adjustment of Cell Adhesion on Polyurethane Structures via Control of the Hard/Soft Segment Ratio. Macromolecular Materials and Engineering, 2020, 305, 2000093.	3.6	7
12	Supramolecular Hydrogel Induced by Electrostatic Interactions between Polycation and Phosphorylated-Fmoc-Tripeptide. Chemistry of Materials, 2020, 32, 1946-1956.	6.7	43
13	Validation of Milner's visco-elastic theory of sintering for the generation of porous polymers with finely tuned morphology. Soft Matter, 2020, 16, 1810-1824.	2.7	3
14	Phase Separation in Supramolecular Hydrogels Based on Peptide Self-Assembly from Enzyme-Coated Nanoparticles. Langmuir, 2019, 35, 10838-10845.	3.5	20
15	Supported Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry. Angewandte Chemie - International Edition, 2019, 58, 18817-18822.	13.8	34
16	Supported Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry. Angewandte Chemie, 2019, 131, 18993-18998.	2.0	5
17	Enzyme-assisted self-assembly within a hydrogel induced by peptide diffusion. Chemical Communications, 2019, 55, 1156-1159.	4.1	29
18	Modulation of Cellular Colonization of Porous Polyurethane Scaffolds via the Control of Pore Interconnection Size and Nanoscale Surface Modifications. ACS Applied Materials & Interfaces, 2019, 11, 19819-19829.	8.0	29

#	Article	IF	CITATIONS
19	Protein-induced low molecular weight hydrogelator self-assembly through a self-sustaining process. Chemical Science, 2019, 10, 4761-4766.	7.4	17
20	Surfaceâ€Assisted Selfâ€Assembly Strategies Leading to Supramolecular Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 1448-1456.	13.8	59
21	OberflÄ ¤ henunterstützte Selbstorganisationsstrategien für supramolekulare Hydrogele. Angewandte Chemie, 2018, 130, 1462-1471.	2.0	11
22	Chromatin de-condensation by switching substrate elasticity. Scientific Reports, 2018, 8, 12655.	3.3	14
23	Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors. ACS Applied Materials & Interfaces, 2018, 10, 18574-18584.	8.0	25
24	Mimicking the Chemistry of Natural Eumelanin Synthesis: The KE Sequence in Polypeptides and in Proteins Allows for a Specific Control of Nanosized Functional Polydopamine Formation. Biomacromolecules, 2018, 19, 3693-3704.	5.4	22
25	Electrochemistry on Stretchable Nanocomposite Electrodes: Dependence on Strain. ACS Nano, 2018, 12, 9223-9232.	14.6	9
26	β-Cyclodextrin-Functionalized Chitosan/Alginate Compact Polyelectrolyte Complexes (CoPECs) as Functional Biomaterials with Anti-Inflammatory Properties. ACS Applied Materials & Interfaces, 2018, 10, 29347-29356.	8.0	36
27	pH-Responsive Saloplastics Based on Weak Polyelectrolytes: From Molecular Processes to Material Scale Properties. Macromolecules, 2018, 51, 4424-4434.	4.8	15
28	New insight in the biological integration of polytetrafluoroethylene from an explant used for diaphragm repair. Journal of Biomaterials Applications, 2017, 31, 844-850.	2.4	6
29	Nature of the Polyanion Governs the Antimicrobial Properties of Poly(arginine)/Polyanion Multilayer Films. Chemistry of Materials, 2017, 29, 3195-3201.	6.7	22
30	Bioinspired Nanofeatured Substrates: Suitable Environment for Bone Regeneration. ACS Applied Materials & Interfaces, 2017, 9, 12791-12801.	8.0	18
31	Hybrid extracellular matrix microspheres for development of complex multicellular architectures. RSC Advances, 2017, 7, 5528-5532.	3.6	4
32	Localized Supramolecular Peptide Selfâ€Assembly Directed by Enzymeâ€Induced Proton Gradients. Angewandte Chemie - International Edition, 2017, 56, 15984-15988.	13.8	39
33	Control of Surface-Localized, Enzyme-Assisted Self-Assembly of Peptides through Catalyzed Oligomerization. Langmuir, 2017, 33, 8267-8276.	3.5	30
34	Review of Electrochemically Triggered Macromolecular Film Buildup Processes and Their Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 28117-28138.	8.0	48
35	Alginate/Chitosan Compact Polyelectrolyte Complexes: A Cell and Bacterial Repellent Material. Chemistry of Materials, 2017, 29, 10418-10425.	6.7	28
36	Step-by-step build-up of covalent poly(ethylene oxide) nanogel films. Nanoscale, 2017, 9, 18379-18391.	5.6	7

#	Article	IF	CITATIONS
37	Electrotriggered Confined Self-assembly of Metal–Polyphenol Nanocoatings Using a Morphogenic Approach. Chemistry of Materials, 2017, 29, 9668-9679.	6.7	65
38	Upregulation of endothelial gene markers in Wharton's jelly mesenchymal stem cells cultured on polyelectrolyte multilayers. Journal of Biomedical Materials Research - Part A, 2017, 105, 292-300.	4.0	8
39	Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors. Acta Biomaterialia, 2017, 49, 575-589.	8.3	21
40	Localized Supramolecular Peptide Selfâ€Assembly Directed by Enzymeâ€Induced Proton Gradients. Angewandte Chemie, 2017, 129, 16200-16204.	2.0	11
41	Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Advanced Healthcare Materials, 2016, 5, 2841-2855.	7.6	162
42	Soft-Mechanochemistry: Mechanochemistry Inspired by Nature. Langmuir, 2016, 32, 7265-7276.	3.5	44
43	Unexpected Bactericidal Activity of Poly(arginine)/Hyaluronan Nanolayered Coatings. Chemistry of Materials, 2016, 28, 8700-8709.	6.7	33
44	Immunomodulation with Self-Crosslinked Polyelectrolyte Multilayer-Based Coatings. Biomacromolecules, 2016, 17, 2189-2198.	5.4	29
45	Stretch-Induced Helical Conformations in Poly(<scp>l</scp> -lysine)/Hyaluronic Acid Multilayers. ACS Applied Materials & Interfaces, 2016, 8, 14958-14965.	8.0	11
46	Harnessing the Multifunctionality in Nature: A Bioactive Agent Release System with Selfâ€Antimicrobial and Immunomodulatory Properties. Advanced Healthcare Materials, 2015, 4, 2026-2036.	7.6	52
47	Selective Nanotrench Filling by One-Pot Electroclick Self-Constructed Nanoparticle Films. Small, 2015, 11, 4638-4642.	10.0	18
48	Bioactive Seed Layer for Surfaceâ€Confined Selfâ€Assembly of Peptides. Angewandte Chemie - International Edition, 2015, 54, 10198-10201.	13.8	53
49	Antibacterial Peptide-Based Gel for Prevention of Medical Implanted-Device Infection. PLoS ONE, 2015, 10, e0145143.	2.5	57
50	Saloplastics: Processing Compact Polyelectrolyte Complexes. Advanced Materials, 2015, 27, 2420-2432.	21.0	154
51	Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry. Langmuir, 2015, 31, 13385-13393.	3.5	28
52	Stable Bioactive Enzyme-Containing Multilayer Films Based on Covalent Cross-Linking from Mussel-Inspired Adhesives. Langmuir, 2015, 31, 12447-12454.	3.5	15
53	Correction: Multivalency: influence of the residence time and the retraction rate on rupture forces measured by AFM. Journal of Materials Chemistry B, 2015, 3, 3098-3098.	5.8	0
54	Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings. Tissue Engineering - Part C: Methods, 2015, 21, 881-888.	2.1	39

#	Article	IF	CITATIONS
55	A new biomimetic route to engineer enzymatically active mechano-responsive materials. Chemical Communications, 2015, 51, 5622-5625.	4.1	18
56	Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film. Biomaterials Science, 2015, 3, 1302-1311.	5.4	22
57	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today, 2015, 10, 138-167.	11.9	284
58	Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe ₃ O ₄ nanostructures grafted onto graphene for supercapacitor application. Journal of Materials Chemistry A, 2015, 3, 22877-22885.	10.3	40
59	Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach. Langmuir, 2015, 31, 10208-10214.	3.5	20
60	Multivalency: influence of the residence time and the retraction rate on rupture forces measured by AFM. Journal of Materials Chemistry B, 2015, 3, 1801-1812.	5.8	7
61	Surface confined self-assembly of polyampholytes generated from charge-shifting polymers. Chemical Communications, 2015, 51, 14092-14095.	4.1	14
62	Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. Langmuir, 2015, 31, 12856-12872.	3.5	122
63	Reversible biomechano-responsive surface based on green fluorescent protein genetically modified with unnatural amino acids. Chemical Communications, 2015, 51, 232-235.	4.1	20
64	Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials, 2015, 37, 144-155.	11.4	21
65	Origin of the Differential Nanoscale Reactivity of Biologically and Chemically Formed Green Rust Crystals Investigated by Chemical Force Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 5978-5987.	3.1	14
66	On the Benefits of Rubbing Salt in the Cut: Selfâ€Healing of Saloplastic PAA/PAH Compact Polyelectrolyte Complexes. Advanced Materials, 2014, 26, 2547-2551.	21.0	113
67	Efficient Gas and Water Vapor Barrier Properties of Thin Poly(lactic acid) Packaging Films: Functionalization with Moisture Resistant Nafion and Clay Multilayers. Chemistry of Materials, 2014, 26, 5459-5466.	6.7	94
68	Influence of the Interaction Strength between Supramolecular Complexes on the Topography of Neutral Polymer Multilayer Films. Langmuir, 2014, 30, 6479-6488.	3.5	13
69	PEDOT-PSS based 2-in-1 step-by-step films: A refined study. Synthetic Metals, 2014, 194, 38-46.	3.9	6
70	Nanosized Films Based on Multicharged Small Molecules and Oppositely Charged Polyelectrolytes Obtained by Simultaneous Spray Coating of Interacting Species. Langmuir, 2013, 29, 14536-14544.	3.5	6
71	Catalytic Saloplastics: Alkaline Phosphatase Immobilized and Stabilized in Compacted Polyelectrolyte Complexes. Advanced Functional Materials, 2013, 23, 4785-4792.	14.9	14
72	Biomimetic Cryptic Site Surfaces for Reversible Chemo- and Cyto-Mechanoresponsive Substrates. ACS Nano, 2013, 7, 3457-3465.	14.6	24

#	Article	IF	CITATIONS
73	Bioaffinity Sensor Based on Nanoarchitectonic Films: Control of the Specific Adsorption of Proteins through the Dual Role of an Ethylene Oxide Spacer. Langmuir, 2013, 29, 7488-7498.	3.5	13
74	Self-Construction of Supramolecular Polyrotaxane Films by an Electrotriggered Morphogen-Driven Process. Langmuir, 2013, 29, 10776-10784.	3.5	18
75	Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties. Advanced Functional Materials, 2013, 23, 673-682.	14.9	60
76	Selfâ€Defensive Biomaterial Coating Against Bacteria and Yeasts: Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide. Advanced Functional Materials, 2013, 23, 4801-4809.	14.9	100
77	Contribution of Soft Substrates to Malignancy and Tumor Suppression during Colon Cancer Cell Division. PLoS ONE, 2013, 8, e78468.	2.5	3
78	One-pot morphogen driven self-constructing films based on non-covalent host–guest interactions. Soft Matter, 2012, 8, 446-453.	2.7	18
79	Morphogen-driven self-construction of covalent films built from polyelectrolytes and homobifunctional spacers: buildup and pH response. Soft Matter, 2012, 8, 10336.	2.7	18
80	Mobility of Proteins in Highly Hydrated Polyelectrolyte Multilayer Films. Journal of Physical Chemistry B, 2012, 116, 5269-5278.	2.6	30
81	Cyto-mechanoresponsive Polyelectrolyte Multilayer Films. Journal of the American Chemical Society, 2012, 134, 83-86.	13.7	35
82	Polysaccharide Films Built by Simultaneous or Alternate Spray: A Rapid Way to Engineer Biomaterial Surfaces. Langmuir, 2012, 28, 8470-8478.	3.5	33
83	Chemically Detachable Polyelectrolyte Multilayer Platform for Cell Sheet Engineering. Chemistry of Materials, 2012, 24, 930-937.	6.7	26
84	Stretch-Induced Biodegradation of Polyelectrolyte Multilayer Films for Drug Release. Langmuir, 2012, 28, 13550-13554.	3.5	37
85	New 2-in-1 Polyelectrolyte Step-by-Step Film Buildup without Solution Alternation: From PEDOT-PSS to Polyelectrolyte Complexes. Langmuir, 2012, 28, 8681-8691.	3.5	24
86	Collagen-Based Fibrillar Multilayer Films Cross-Linked by a Natural Agent. Biomacromolecules, 2012, 13, 2128-2135.	5.4	69
87	Layer-by-Layer Enzymatic Platform for Stretched-Induced Reactive Release. ACS Macro Letters, 2012, 1, 797-801.	4.8	16
88	Strategies for covalently reticulated polymer multilayers. Soft Matter, 2012, 8, 9738.	2.7	50
89	The control of chromosome segregation during mitosis in epithelial cells by substrate elasticity. Biomaterials, 2012, 33, 798-809.	11.4	14
90	Sprayâ€Assisted Polyelectrolyte Multilayer Buildup: from Stepâ€by‣tep to Single‣tep Polyelectrolyte Film Constructions. Advanced Materials, 2012, 24, 1001-1016.	21.0	125

#	Article	IF	CITATIONS
91	Tailored design of mechanically sensitive biocatalytic assemblies based on polyelectrolyte multilayers. Journal of Materials Chemistry, 2011, 21, 8324.	6.7	14
92	Restructuring of exponentially growing polyelectrolyte multilayer films induced by salt concentration variations after film deposition. Journal of Materials Chemistry, 2011, 21, 8416.	6.7	23
93	Surface immobilized block copolymer micelles with switchable accessibility of hydrophobic pockets. Soft Matter, 2011, 7, 11144.	2.7	22
94	Tuning of the Elastic Modulus of Polyelectrolyte Multilayer Films built up from Polyanions Mixture Macromolecules, 2011, 44, 8954-8961.	4.8	16
95	Cellularized alginate sheets for blood vessel reconstruction. Soft Matter, 2011, 7, 3621.	2.7	14
96	Simultaneous Spray Coating of Interacting Species: General Rules Governing the Poly(styrene) Tj ETQq0 0 0 rgBT	Qverlock	10 Tf 50 54
97	Dynamic Aspects of Films Prepared by a Sequential Deposition of Species: Perspectives for Smart and Responsive Materials. Advanced Materials, 2011, 23, 1191-1221.	21.0	213
98	Electrochemically Triggered Assembly of Films: A Oneâ€Pot Morphogenâ€Driven Buildup. Angewandte Chemie - International Edition, 2011, 50, 4374-4377.	13.8	54
99	Covalent Layer-by-Layer Assemblies of Polyelectrolytes and Homobifunctional Spacers. Langmuir, 2010, 26, 12351-12357.	3.5	33
100	Polymer Multilayer Films Obtained by Electrochemically Catalyzed Click Chemistry. Langmuir, 2010, 26, 2816-2824.	3.5	73
101	Sprayâ€On Organic/Inorganic Films: A General Method for the Formation of Functional Nano―to Microscale Coatings. Angewandte Chemie - International Edition, 2010, 49, 10110-10113.	13.8	73
102	Turbidity diagrams of polyanion/polycation complexes in solution as a potential tool to predict the occurrence of polyelectrolyte multilayer deposition. Journal of Colloid and Interface Science, 2010, 346, 163-171.	9.4	44

103	Multifunctional Stretchable Plasma Polymer Modified PDMS Interface for Mechanically Responsive Materials. Plasma Processes and Polymers, 2010, 7, 64-77.	3.0	19
104	Polyelectrolyte Multilayerâ€Mediated Gene Delivery for Semaphorin Signaling Pathway Control. Small, 2010, 6, 2405-2411.	10.0	14
105	Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. Journal of Cell Science, 2010, 123, 29-39.	2.0	75
106	Nanoscale Precipitation Coating: The Deposition of Inorganic Films through Step-by-Step Spray-Assembly. ACS Nano, 2010, 4, 4792-4798.	14.6	28
107	Global and local view on the electrochemically induced degradation of polyelectrolyte multilayers: from dissolution to delamination. Soft Matter, 2010, 6, 4246.	2.7	26
108	Ion and Solvent Exchange Processes in PGA/PAH Polyelectrolyte Multilayers Containing Ferrocyanide. Journal of Physical Chemistry B, 2010, 114, 3759-3768.	2.6	33

#	Article	IF	CITATIONS
109	Anti-fouling phosphorylcholine bearing polyelectrolyte multilayers: Cell adhesion resistance at rest and under stretching. Soft Matter, 2010, 6, 1503.	2.7	25
110	Influence of Cu(I)â^'Alkyne ï€-Complex Charge on the Step-by-Step Film Buildup through Sharpless Click Reaction. Macromolecules, 2010, 43, 3994-3997.	4.8	25
111	Unlimited growth of host–guest multilayer films based on functionalized neutral polymers. Soft Matter, 2010, 6, 3747.	2.7	24
112	Stepâ€by‣tep Buildâ€Up of Biologically Active Cellâ€Containing Stratified Films Aimed at Tissue Engineering. Advanced Materials, 2009, 21, 650-655.	21.0	43
113	Mechanotransductive surfaces for reversible biocatalysis activation. Nature Materials, 2009, 8, 731-735.	27.5	122
114	Polyelectrolyte Multilayer Films Built from Poly(l-lysine) and a Two-Component Anionic Polysaccharide Blend. Langmuir, 2009, 25, 3593-3600.	3.5	23
115	Effective embedding of liposomes into polyelectrolyte multilayered films: the relative importance of lipid-polyelectrolyte and interpolyelectrolyte interactions. Soft Matter, 2009, 5, 1394.	2.7	76
116	Tunable Synthesis of Prussian Blue in Exponentially Growing Polyelectrolyte Multilayer Films. Langmuir, 2009, 25, 14030-14036.	3.5	33
117	Polyelectrolyte Multilayers Capped with Polyelectrolytes Bearing Phosphorylcholine and Triethylene Glycol Groups: Parameters Influencing Antifouling Properties. Langmuir, 2009, 25, 3610-3617.	3.5	44
118	Characterization of Dopamineâ^'Melanin Growth on Silicon Oxide. Journal of Physical Chemistry C, 2009, 113, 8234-8242.	3.1	322
119	Effect of the Supporting Electrolyte Anion on the Thickness of PSS/PAH Multilayer Films and on Their Permeability to an Electroactive Probe. Langmuir, 2009, 25, 2282-2289.	3.5	72
120	Hole formation induced by ionic strength increase in exponentially growing multilayer films. Soft Matter, 2009, 5, 2269.	2.7	65
121	Polyelectrolyte Multilayers. , 2009, , 1017-1042.		1
122	O2 Level Controls Hematopoietic Circulating Progenitor Cells Differentiation into Endothelial or Smooth Muscle Cells. PLoS ONE, 2009, 4, e5514.	2.5	25
123	Surface Methods. , 2009, , 477-594.		0
124	Relevance of bi-functionalized polyelectrolyte multilayers for cell transfection. Biomaterials, 2008, 29, 618-624.	11.4	33
125	Microstructure of TiN coatings synthesized by direct pulsed Nd:YAG laser nitriding of titanium: Development of grain size, microstrain, and grain orientation. Applied Physics A: Materials Science and Processing, 2008, 91, 305-314.	2.3	27
126	Characterization of polyelectrolyte multilayer films on polyethylene terephtalate vascular prostheses under mechanical stretching. Journal of Biomedical Materials Research - Part A, 2008, 84A, 576-588.	4.0	18

#	Article	IF	CITATIONS
127	Polyelectrolyte Films Boost Progenitor Cell Differentiation into Endotheliumâ€like Monolayers. Advanced Materials, 2008, 20, 2674-2678.	21.0	36
128	Composite films of polycations and TiO2 nanoparticles with photoinduced superhydrophilicity. Journal of Colloid and Interface Science, 2008, 324, 127-133.	9.4	32
129	Stratified PEI-(PSS-PDADMAC)20-PSS-(PDADMAC-TiO2) multilayer films produced by spray deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 142-147.	4.7	11
130	Stability of embossed PEI-(PSS–PDADMAC)20 multilayer films versus storage time and versus a change in ionic strength. Applied Surface Science, 2008, 255, 1988-1995.	6.1	17
131	Polyelectrolyte multilayer coatings that resist protein adsorption at rest and under stretching. Journal of Materials Chemistry, 2008, 18, 4242.	6.7	30
132	Small Vessel Replacement by Human Umbilical Arteries With Polyelectrolyte Film-Treated Arteries. Journal of the American College of Cardiology, 2008, 52, 1589-1597.	2.8	56
133	Use of dopamine polymerisation to produce free-standing membranes from (PLL-HA)n exponentially growing multilayer films. Soft Matter, 2008, 4, 1621.	2.7	62
134	Chapter 1 Liposome Embedding into Polyelectrolyte Multilayers. Behavior Research Methods, 2008, 8, 1-25.	4.0	1
135	Composite multilayered biocompatible polyelectrolyte films with intact liposomes: stability and temperature triggered dye release. Soft Matter, 2008, 4, 122-130.	2.7	116
136	Embedded Silver Ions-Containing Liposomes in Polyelectrolyte Multilayers: Cargos Films for Antibacterial Agents. Langmuir, 2008, 24, 10209-10215.	3.5	92
137	Chemical Force Titration of Plasma Polymer-Modified PDMS Substrates by Using Plasma Polymer-Modified AFM Tips. Langmuir, 2008, 24, 4874-4880.	3.5	21
138	Swelling and Contraction of Ferrocyanide-Containing Polyelectrolyte Multilayers upon Application of an Electric Potential. Langmuir, 2008, 24, 13668-13676.	3.5	60
139	Dynamics of Poly(<scp>l</scp> -lysine) in Hyaluronic Acid/Poly(<scp>l</scp> -lysine) Multilayer Films Studied by Fluorescence Recovery after Pattern Photobleaching. Langmuir, 2008, 24, 7842-7847.	3.5	72
140	Micro-stratified architectures based on successive stacking of alginate gel layers and poly(l-lysine)–hyaluronic acid multilayer films aimed at tissue engineering. Soft Matter, 2008, 4, 1422.	2.7	49
141	Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 280-290.	2.6	116
142	Influence of the Polyelectrolyte Molecular Weight on Exponentially Growing Multilayer Films in the Linear Regime. Langmuir, 2007, 23, 1898-1904.	3.5	198
143	Changes in Silicon Elastomeric Surface Properties under Stretching Induced by Three Surface Treatments. Langmuir, 2007, 23, 13136-13145.	3.5	30
144	Polyelectrolyte multilayer films under mechanical stretch. Soft Matter, 2007, 3, 1413.	2.7	40

#	Article	IF	CITATIONS
145	Stiffening of Soft Polyelectrolyte Architectures by Multilayer Capping Evidenced by Viscoelastic Analysis of AFM Indentation Measurements. Journal of Physical Chemistry C, 2007, 111, 8299-8306.	3.1	58
146	Nanocomposite Silica/Polyamine Films Prepared by a Reactive Layer-by-Layer Deposition. Langmuir, 2007, 23, 3706-3711.	3.5	49
147	Poly(styrenesulfonate)/Poly(allylamine) Multilayers:Â A Route To Favor Endothelial Cell Growth on Expanded Poly(tetrafluoroethylene) Vascular Grafts. Biomacromolecules, 2007, 8, 2156-2160.	5.4	51
148	Mechanically Responding Nanovalves Based on Polyelectrolyte Multilayers. Nano Letters, 2007, 7, 657-662.	9.1	52
149	Anomalous Thickness Evolution of Multilayer Films Made from Poly-I-lysine and Mixtures of Hyaluronic Acid and Polystyrene Sulfonate. Langmuir, 2007, 23, 2602-2607.	3.5	25
150	Multiple Strata of Exponentially Growing Polyelectrolyte Multilayer Films. Macromolecules, 2007, 40, 316-321.	4.8	38
151	Phospholipid Bilayers as Biomembrane-like Barriers in Layer-by-Layer Polyelectrolyte Films. Langmuir, 2007, 23, 8236-8242.	3.5	25
152	Layer-by-Layer Films from Hyaluronan and Amine-Modified Hyaluronan. Langmuir, 2007, 23, 2655-2662.	3.5	55
153	Multifunctional Polyelectrolyte Multilayer Films:Â Combining Mechanical Resistance, Biodegradability, and Bioactivity. Biomacromolecules, 2007, 8, 139-145.	5.4	127
154	Reâ€endothelialization of Human Umbilical Arteries Treated with Polyelectrolyte Multilayers: A Tool for Damaged Vessel Replacement. Advanced Functional Materials, 2007, 17, 2667-2673.	14.9	47
155	Bone Formation Mediated by Synergy-Acting Growth Factors Embedded in a Polyelectrolyte Multilayer Film. Advanced Materials, 2007, 19, 693-697.	21.0	89
156	Synthesis of Polyelectrolytes Bearing Phosphorylcholine Moieties. Macromolecular Rapid Communications, 2007, 28, 2217-2223.	3.9	12
157	Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. New Biotechnology, 2007, 24, 33-41.	2.7	70
158	Cell Apoptosis Control Using BMP4 and Noggin Embedded in a Polyelectrolyte Multilayer Film. Small, 2007, 3, 1577-1583, and a start with the start of	10.0	35
159	display="inline"> <mml:mrow><mml:mn>4</mml:mn><mml:mi>f</mml:mi></mml:mrow> state occupancy of Ce in highly correlated <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">Ce</mml:mi><mml:mi mathvariant="normal">Si<mml:mo>â^</mml:mo><mml:mi< td=""><td>3.2</td><td>6</td></mml:mi<></mml:mi </mml:mrow></mml:math>	3.2	6
160	mathyarlant="normal">fee(mmtmb c/mmtmrows c/mmtmath>multilayers: An x-ray absorption spectro From Exponential to Linear Growth in Polyelectrolyte Multilayers. Langmuir, 2006, 22, 4376-4383.	3.5	273
161	Nucleation Kinetics of Calcium Phosphates on Polyelectrolyte Multilayers Displaying Internal Secondary Structure. Crystal Growth and Design, 2006, 6, 327-334.	3.0	66
162	Polyelectrolyte Multilayers with a Tunable Young's Modulus:  Influence of Film Stiffness on Cell Adhesion. Langmuir, 2006, 22, 1193-1200.	3.5	297

#	Article	IF	CITATIONS
163	Partial Poly(glutamic acid) ↔ Poly(aspartic acid) Exchange in Layer-by-Layer Polyelectrolyte Films. Structural Alterations in the Three-Component Architectures. Langmuir, 2006, 22, 5753-5759.	3.5	26
164	Glycated Polyelectrolyte Multilayer Films:  Differential Adhesion of Primary versus Tumor Cells. Biomacromolecules, 2006, 7, 2882-2889.	5.4	30
165	Polyelectrolyte Multilayer Films as Substrates for Photoreceptor Cells. Biomacromolecules, 2006, 7, 86-94.	5.4	64
166	Layer-by-Layer Self-Assembled Polyelectrolyte Multilayers with Embedded Liposomes: Immobilized Submicronic Reactors for Mineralization. Langmuir, 2006, 22, 2358-2364.	3.5	78
167	Relationship between the Growth Regime of Polyelectrolyte Multilayers and the Polyanion/Polycation Complexation Enthalpy. Journal of Physical Chemistry B, 2006, 110, 19443-19449.	2.6	180
168	Polyplex-embedding in polyelectrolyte multilayers for gene delivery. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 419-422.	2.6	48
169	Biologically active lipid A antagonist embedded in a multilayered polyelectrolyte architecture. Biomaterials, 2006, 27, 1771-1777.	11.4	24
170	Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials, 2006, 27, 4149-4156.	11.4	107
171	Influence of Polyelectrolyte Multilayer Films on the ICAM-1 Expression of Endothelial Cells. Cell Biochemistry and Biophysics, 2006, 44, 223-232.	1.8	5
172	Imaging Cell Interactions With Native and Crosslinked Polyelectrolyte Multilayers. Cell Biochemistry and Biophysics, 2006, 44, 273-286.	1.8	53
173	Effect of crosslinking on the elasticity of polyelectrolyte multilayer films measured by colloidal probe AFM. Microscopy Research and Technique, 2006, 69, 84-92.	2.2	88
174	Polyelectrolyte Multilayer Film Coating and Stability at the Surfaces of Oral Prosthesis Base Polymers: an in vitro and in vivo Study. Journal of Dental Research, 2006, 85, 44-48.	5.2	26
175	Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8618-8621.	7.1	227
176	Initial adhesion of endothelial cells on polyelectrolyte multilayer films. Bio-Medical Materials and Engineering, 2006, 16, S115-21.	0.6	3
177	Polyelectrolyte multilayers functionalized by a synthetic analogue of an anti-inflammatory peptide, α-MSH, for coating a tracheal prosthesis. Biomaterials, 2005, 26, 2621-2630.	11.4	110
178	Endothelial cell—interactions with polyelectrolyte multilayer films. Biomaterials, 2005, 26, 4568-4575.	11.4	83
179	Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials, 2005, 26, 545-554.	11.4	65
180	Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials, 2005, 26, 3353-3361.	11.4	202

#	Article	IF	CITATIONS
181	Primary Cell Adhesion on RGD-Functionalized and Covalently Crosslinked Thin Polyelectrolyte Multilayer Films. Advanced Functional Materials, 2005, 15, 83-94.	14.9	164
182	Short-Time Tuning of the Biological Activity of Functionalized Polyelectrolyte Multilayers. Advanced Functional Materials, 2005, 15, 648-654.	14.9	76
183	Controlled Degradability of Polysaccharide Multilayer Films In Vitro and In Vivo. Advanced Functional Materials, 2005, 15, 1771-1780.	14.9	170
184	Application of fluorescence recovery after photobleaching to diffusion of a polyelectrolyte in a multilayer film. Microscopy Research and Technique, 2005, 66, 43-57.	2.2	46
185	Free standing membranes made of biocompatible polyelectrolytes using the layer by layer method. Journal of Membrane Science, 2005, 253, 49-56.	8.2	43
186	Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials, 2005, 26, 6704-6712.	11.4	118
187	Degradability of Polysaccharides Multilayer Films in the Oral Environment:Â an in Vitro and in Vivo Study. Biomacromolecules, 2005, 6, 726-733.	5.4	123
188	Interactions between Multivalent Ions and Exponentially Growing Multilayers: Dissolution and Exchange Processes. Langmuir, 2005, 21, 8526-8531.	3.5	61
189	Effect of Thiocyanate Counterion Condensation on Poly(allylamine hydrochloride) Chains on the Buildup and Permeability of Polystyrenesulfonate/Polyallylamine Polyelectrolyte Multilayers. Langmuir, 2005, 21, 4129-4137.	3.5	24
190	Glassy State of Polystyrene Sulfonate/Polyallylamine Polyelectrolyte Multilayers Revealed by the Surface Force Apparatus. Langmuir, 2005, 21, 1166-1170.	3.5	21
191	Polyelectrolyte Multilayers and Degradable Polymer Layers as Multicompartment Films. Langmuir, 2005, 21, 12372-12377.	3.5	68
192	Mechanically Responsive Films of Variable Hydrophobicity Made of Polyelectrolyte Multilayers. Langmuir, 2005, 21, 10328-10331.	3.5	35
193	Multivalent Ion/Polyelectrolyte Exchange Processes in Exponentially Growing Multilayers. Langmuir, 2005, 21, 3664-3669.	3.5	72
194	Dipping versus Spraying:Â Exploring the Deposition Conditions for Speeding Up Layer-by-Layer Assembly. Langmuir, 2005, 21, 7558-7567.	3.5	412
195	Ultrathin Coatings and (Poly(glutamic acid)/Polyallylamine) Films Deposited by Continuous and Simultaneous Spraying. Langmuir, 2005, 21, 800-802.	3.5	90
196	Layer by Layer Self-Assembled Polyelectrolyte Multilayers with Embedded Phospholipid Vesicles Obtained by Spraying: Integrity of the Vesicles. Langmuir, 2005, 21, 7854-7859.	3.5	92
197	Behaviour of endothelial cells seeded on thin polyelectrolyte multilayered films: a new biological scaffold. Clinical Hemorheology and Microcirculation, 2005, 33, 269-75.	1.7	5
198	Multilayer Polyelectrolyte Films Functionalized by Insertion of Defensin: a New Approach to Protection of Implants from Bacterial Colonization. Antimicrobial Agents and Chemotherapy, 2004, 48, 3662-3669.	3.2	184

#	Article	IF	CITATIONS
199	Primary osteoblasts adhesion onto RGD-functionalized and cross-linked polyelectrolyte multilayer films. Materials Research Society Symposia Proceedings, 2004, 823, W12.1.1.	0.1	1
200	Build-up of Polypeptide Multilayer Coatings with Anti-Inflammatory Properties Based on the Embedding of Piroxicam–Cyclodextrin Complexes. Advanced Functional Materials, 2004, 14, 174-182.	14.9	122
201	Control of Monocyte Morphology on and Response to Model Surfaces for Implants Equipped with Anti-Inflammatory Agent. Advanced Materials, 2004, 16, 1507-1511.	21.0	79
202	pH dependent growth of poly(L-lysine)/poly(L-glutamic) acid multilayer films and their cell adhesion properties. Surface Science, 2004, 570, 13-29.	1.9	152
203	Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials, 2004, 25, 2003-2011.	11.4	229
204	Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy. Biosensors and Bioelectronics, 2004, 20, 553-561.	10.1	54
205	Multicompartment Films Made of Alternate Polyelectrolyte Multilayers of Exponential and Linear Growth. Langmuir, 2004, 20, 7298-7302.	3.5	119
206	Direct Evidence for Vertical Diffusion and Exchange Processes of Polyanions and Polycations in Polyelectrolyte Multilayer Films. Macromolecules, 2004, 37, 1159-1162.	4.8	125
207	Controlling the Growth Regime of Polyelectrolyte Multilayer Films:Â Changing from Exponential to Linear Growth by Adjusting the Composition of Polyelectrolyte Mixtures. Langmuir, 2004, 20, 1980-1985.	3.5	142
208	Interactions between Two Polyelectrolyte Multilayers Investigated by the Surface Force Apparatus. Langmuir, 2004, 20, 282-286.	3.5	28
209	Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes. Langmuir, 2004, 20, 5575-5582.	3.5	100
210	Giant Liposome Microreactors for Controlled Production of Calcium Phosphate Crystals. Langmuir, 2004, 20, 6127-6133.	3.5	57
211	Mechanical Properties of Cross-Linked Hyaluronic Acid/Poly-(l-lysine) Multilayer Films. Macromolecules, 2004, 37, 10195-10198.	4.8	53
212	Layer by Layer Buildup of Polysaccharide Films: Physical Chemistry and Cellular Adhesion Aspects. Langmuir, 2004, 20, 448-458.	3.5	482
213	Modeling the Buildup of Polyelectrolyte Multilayer Films Having Exponential Growth✗. Journal of Physical Chemistry B, 2004, 108, 635-648.	2.6	261
214	Improvement of Stability and Cell Adhesion Properties of Polyelectrolyte Multilayer Films by Chemical Cross-Linking. Biomacromolecules, 2004, 5, 284-294.	5.4	408
215	Layer by Layer Self-Assembled Polyelectrolyte Multilayers with Embedded Phospholipid Vesicles. Langmuir, 2004, 20, 4835-4839.	3.5	108
216	Bioactive Coatings Based on a Polyelectrolyte Multilayer Architecture Functionalized by Embedded Proteins. Advanced Materials, 2003, 15, 692-695.	21.0	232

#	Article	IF	CITATIONS
217	Multilayered Polypeptide Films: Secondary Structures and Effect of Various Stresses. Langmuir, 2003, 19, 9873-9882.	3.5	79
218	Multilayers Built from Two Component Polyanions and Single Component Polycation Solutions: A Way To Engineer Films with Desired Secondary Structure. Journal of Physical Chemistry B, 2003, 107, 12734-12739.	2.6	69
219	Buildup of Exponentially Growing Multilayer Polypeptide Films with Internal Secondary Structure. Langmuir, 2003, 19, 440-445.	3.5	181
220	Deposition kinetics of colloidal particles at an interface: Interplay of diffusion and gravity. Journal of Chemical Physics, 2003, 119, 11420-11428.	3.0	1
221	Mechanism of Interfacial Exchange Phenomena for Proteins Adsorbed at Solid – Liquid Interfaces. Surfactant Science, 2003, , .	0.0	2
222	Comparison of the Structure of Polyelectrolyte Multilayer Films Exhibiting a Linear and an Exponential Growth Regime: An in Situ Atomic Force Microscopy Study. Macromolecules, 2002, 35, 4458-4465.	4.8	478
223	Secondary Structure of Polypeptide Multilayer Films:Â An Example of Locally Ordered Polyelectrolyte Multilayers. Langmuir, 2002, 18, 4523-4525.	3.5	80
224	Dynamical Behavior of Human Serum Albumin Adsorbed on or Embedded in Polyelectrolyte Multilayers. Journal of Physical Chemistry B, 2002, 106, 6049-6055.	2.6	44
225	Secondary Structure of Proteins Adsorbed onto or Embedded in Polyelectrolyte Multilayers. Biomacromolecules, 2002, 3, 1135-1143.	5.4	126
226	Complexation Mechanism of Bovine Serum Albumin and Poly(allylamine hydrochloride). Journal of Physical Chemistry B, 2002, 106, 2357-2364.	2.6	126
227	Molecular Tectonics:  Abiotic Control of Hydroxyapatite Crystals Morphology. Crystal Growth and Design, 2002, 2, 489-492.	3.0	13
228	Cell Interactions with Polyelectrolyte Multilayer Films. Biomacromolecules, 2002, 3, 1170-1178.	5.4	226
229	Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12531-12535.	7.1	826
230	Polyelectrolyte multilayer films modulate cytoskeletal organization in chondrosarcoma cells. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 712-731.	3.5	44
231	Multi-Bead-and-Spring Model to Interpret Protein Detachment Studied by AFM Force Spectroscopy. Biophysical Journal, 2002, 83, 706-722.	0.5	11
232	Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. Journal of Biomedical Materials Research Part B, 2002, 60, 657-667.	3.1	188
233	Protein adsorption onto auto-assembled polyelectrolyte films. New Biotechnology, 2002, 19, 273-280.	2.7	91
234	Protein Adsorption onto Auto-Assembled Polyelectrolyte Films. Langmuir, 2001, 17, 878-882.	3.5	199

#	Article	IF	CITATIONS
235	Buildup Mechanism for Poly(l-lysine)/Hyaluronic Acid Films onto a Solid Surface. Langmuir, 2001, 17, 7414-7424.	3.5	647
236	Peptide Hormone Covalently Bound to Polyelectrolytes and Embedded into Multilayer Architectures Conserving Full Biological Activity. Biomacromolecules, 2001, 2, 800-805.	5.4	209
237	Stabilizing Effects of Various Polyelectrolyte Multilayer Films on the Structure of Adsorbed/Embedded Fibrinogen Molecules: An ATRâ^'FTIR Studyâ€. Journal of Physical Chemistry B, 2001, 105, 11906-11916.	2.6	177
238	Lateral Mobility of Proteins Adsorbed on or Embedded in Polyelectrolyte Multilayers. Langmuir, 2001, 17, 6248-6253.	3.5	47
239	Determination of structural parameters characterizing thin films by optical methods: A comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. Journal of Chemical Physics, 2001, 115, 1086-1094.	3.0	132
240	Semi-automatized processing of AFM force-spectroscopy data. Ultramicroscopy, 2001, 87, 67-78.	1.9	25
241	Experimental and modeled deposition kinetics of large colloidal particles. Physica A: Statistical Mechanics and Its Applications, 2001, 298, 198-228.	2.6	8
242	Simulative determination of kinetic coefficients for nucleation rates. Journal of Chemical Physics, 2001, 114, 8091-8104.	3.0	35
243	Molecular dynamics studies of evaporation and condensation coefficients in nucleation theory. AIP Conference Proceedings, 2000, , .	0.4	Ο
244	Irreversible adsorption of colloidal particles on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 165, 255-285.	4.7	98
245	An application of the Kubo and Nyquist relations to nucleation. AIP Conference Proceedings, 2000, , .	0.4	Ο
246	A molecular based derivation of the nucleation theorem. Journal of Chemical Physics, 2000, 113, 4524-4532.	3.0	40
247	Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10802-10807.	7.1	60
248	From Random Sequential Adsorption to Ballistic Deposition: A General View of Irreversible Deposition Processes. Journal of Physical Chemistry B, 2000, 104, 2204-2214.	2.6	66
249	In Situ Determination of the Structural Properties of Initially Deposited Polyelectrolyte Multilayers. Langmuir, 2000, 16, 1249-1255.	3.5	569
250	Influence of Polyelectrolyte Multilayer Films on Calcium Phosphate Nucleation. Journal of the American Chemical Society, 2000, 122, 8998-9005.	13.7	104
251	Protein Interactions with Polyelectrolyte Multilayers:Â Interactions between Human Serum Albumin and Polystyrene Sulfonate/Polyallylamine Multilayers. Biomacromolecules, 2000, 1, 674-687.	5.4	182
252	Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6705-6710.	7.1	61

#	Article	IF	CITATIONS
253	Irreversible adsorption/deposition kinetics: A generalized approach. Journal of Chemical Physics, 1999, 110, 3118-3128.	3.0	65
254	Extended(n/v)-Stillinger cluster for use in the theory of homogeneous nucleation. Physical Review E, 1999, 60, 771-778.	2.1	11
255	A molecular theory of the homogeneous nucleation rate. II. Application to argon vapor. Journal of Chemical Physics, 1999, 110, 6438-6450.	3.0	72
256	Extended random sequential adsorption model of irreversible deposition processes: From simulations to experiments. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11100-11105.	7.1	13
257	Heterogeneous nucleation of calcium phosphate salts at a solid/liquid interface examined by scanning angle reflectometry. Journal of Crystal Growth, 1999, 197, 927-938.	1.5	16
258	A molecular theory of the homogeneous nucleation rate. I. Formulation and fundamental issues. Journal of Chemical Physics, 1999, 110, 6421-6437.	3.0	85
259	FTIR-ATR and Radiolabeling Study of Structural Modifications during Protein Adsorption on Hydrophilic Surfaces. 2. The Case of Apo-α-lactalbumine. Langmuir, 1999, 15, 4930-4933.	3.5	6
260	Elution of Adsorbed Fibrinogen from a Silica Surface by Anionic Surfactants. 2. Effect of the Hydrocarbon Chain Lengths. Langmuir, 1999, 15, 6299-6303.	3.5	5
261	Irreversible deposition of magnetic particles on solid surfaces. Europhysics Letters, 1999, 46, 211-216.	2.0	1
262	Kinetics of the homogeneous exchange of ?-lactalbumine adsorbed on titanium oxide surface. , 1998, 40, 449-457.		15
263	FTIRâ^'ATR and Radiolabeling Study of the Adsorption of Ribonuclease A onto Hydrophilic Surfaces:Â Correlation between the Exchange Rate and the Interfacial Denaturation. Langmuir, 1998, 14, 6493-6500.	3.5	37
264	Elution Process of Adsorbed Fibrinogen by SDS:Â Competition between Removal and Anchoring. Langmuir, 1998, 14, 2167-2173.	3.5	15
265	Deposition Kinetics of Particles at a Solid Surface Governed by the Ballistic Deposition Model. Langmuir, 1998, 14, 7267-7270.	3.5	9
266	4fand5dmagnetic moments in highly correlated [Ce/La/Fe] and [La/Ce/Fe] multilayers studied by x-ray magnetic circular dichroism. Physical Review B, 1998, 57, 2174-2187.	3.2	24
267	Sensitivity of optical methods to the homogeneity of particulate layers. Journal of Chemical Physics, 1998, 108, 7416-7425.	3.0	4
268	How much can you learn about thin adsorbed layers with optical techniques?. , 1998, , 296-299.		4
269	Irreversible deposition/adsorption processes on solid surfaces. Annales De Physique, 1998, 23, 1-89.	0.2	31
270	Density fluctuations of assemblies of irreversibly deposited particles on solid surfaces. Journal of Chemical Physics, 1997, 107, 2089-2095.	3.0	6

#	Article	IF	CITATIONS
271	Defining Physical Clusters in Nucleation Theory from the N-Particle Distribution Function. Journal of Physical Chemistry B, 1997, 101, 8740-8747.	2.6	35
272	Validity of the Uniform Thin-Film Approximation for the Optical Analysis of Particulate Films. Langmuir, 1997, 13, 4906-4909.	3.5	19
273	Irreversible Deposition of Colloidal Particles on an Inclined Plane in a Closed Vessel. Langmuir, 1997, 13, 693-700.	3.5	5
274	Characterization of Thin Protein Films through Scanning Angle Reflectometry. Langmuir, 1997, 13, 3177-3186.	3.5	14
275	Kinetics of the Homogeneous Exchange of Lysozyme Adsorbed on a Titanium Oxide Surface. Langmuir, 1997, 13, 729-735.	3.5	35
276	Red blood cell adhesion on a solid/liquid interface: comparison of two models. Clinical Hemorheology and Microcirculation, 1997, 17, 307-13.	1.7	1
277	Scanning Angle Reflectometry Study of the Structure of Antigenâ^'Antibody Layers Adsorbed on Silica Surfaces. Langmuir, 1996, 12, 4857-4865.	3.5	40
278	Optical properties of surfaces covered by latex particles with a bimodal size distribution: comparison with theory. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 1046.	1.5	8
279	Do physiological concentrations of IgC induce a direct aggregation of red blood cells: comparison with fibrinogen. Biochimica Et Biophysica Acta - General Subjects, 1996, 1291, 138-142.	2.4	14
280	Structural and magnetic properties of La/Fe multilayers. Applied Physics A: Materials Science and Processing, 1996, 63, 183-190.	2.3	7
281	Dynamic Aspects of Protein Adsorption onto Titanium Surfaces:  Mechanism of Desorption into Buffer and Release in the Presence of Proteins in the Bulk. Langmuir, 1996, 12, 1614-1621.	3.5	57
282	The Structure of Antigen-Antibody Layers Adsorbed on Silica Surfaces: a Scanning Angle Reflectometry Study. Materials Research Society Symposia Proceedings, 1996, 440, 215.	0.1	0
283	Adhesion of red blood cells to solid surfaces: Experimental results and modeling. Clinical Hemorheology and Microcirculation, 1996, 16, 35-42.	1.7	3
284	Red blood cell adhesion on a solid/liquid interface. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15136-15140.	7.1	15
285	PAC and CEMS study of ion-irradiated and layers. Thin Solid Films, 1996, 275, 69-72.	1.8	14
286	Control of Protein Adsorption in Capillary Electrophoresis via an Irreversibly Bound Protein Coating. Journal of Colloid and Interface Science, 1996, 183, 269-273.	9.4	15
287	Influence of hydrodynamic interactions on the ballistic deposition of colloidal particles on solid surfaces. Journal of Chemical Physics, 1996, 105, 7815-7827.	3.0	23
288	Optical characterization of thin films: Beyond the uniform layer model. Journal of Chemical Physics, 1996, 105, 6082-6085.	3.0	23

#	Article	IF	CITATIONS
289	Ion-beam mixing of Ag/Fe and In/Fe layers studied by hyperfine techniques. Physical Review B, 1996, 53, 10237-10243.	3.2	43
290	Universal behavior of the structure of assemblies of particles irreversibly deposited on solid surfaces. Physical Review E, 1996, 54, 6962-6965.	2.1	4
291	Coverage fluctuation and the available line fraction for spheres deposited on a one-dimensional collector after diffusion under the influence of gravity. Physical Review E, 1996, 53, 2473-2479.	2.1	5
292	PAC and CEMS study of ion-irradiated Ag/Fe and In/Fe layers. , 1996, , 69-72.		1
293	Fluctuation of the number of particles adsorbed on surfaces under the influence of gravity. Physical Review E, 1995, 51, 4292-4295.	2.1	15
294	Influence of gravity on the jamming-limit coverage for the random deposition of large spheres on one- and two-dimensional collectors. Physical Review E, 1995, 51, 6286-6288.	2.1	14
295	Statistical properties of surfaces covered by deposited particles. Journal of Chemical Physics, 1995, 103, 8285-8295.	3.0	43
296	Fluctuation of the number of adsorbed particles analyzed by a virial expansion: Comparison between experiment and theory. Journal of Chemical Physics, 1995, 102, 5077-5081.	3.0	32
297	Density fluctuations in random sequential adsorption based on mixing of configurational species. Molecular Physics, 1995, 86, 901-906.	1.7	1
298	A Paradox Resolved: Apparently Identical Radial Distribution Functions, Different Density Variances. Europhysics Letters, 1995, 30, 261-265.	2.0	13
299	Optical Properties of Surfaces Covered with Latex Particles: Comparison with Theory. The Journal of Physical Chemistry, 1995, 99, 790-797.	2.9	31
300	Exchange Kinetics for a Heterogeneous Protein System on a Solid Surface. Langmuir, 1995, 11, 3145-3152.	3.5	55
301	Reactivity of Antibodies on Antigens Adsorbed on Solid Surfaces. ACS Symposium Series, 1995, , 334-349.	0.5	7
302	Adhesion of hard spheres under the influence of double-layer, van der Waals, and gravitational potentials at a solid/liquid interface Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3004-3008.	7.1	27
303	A Lattice Model for the Adsorption Kinetics of Proteins on Solid Surfaces. The Journal of Physical Chemistry, 1994, 98, 4906-4912.	2.9	2
304	Study of nanocrystalline and amorphous powders prepared by mechanical alloying. Hyperfine Interactions, 1994, 94, 2239-2244.	0.5	41
305	Kinetics of exchange processes in the adsorption of proteins on solid surfaces Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7330-7334.	7.1	40
306	Fluctuation of the number of particles deposited on a flat surface by a random sequential adsorption mechanism Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10029-10033.	7.1	16

#	Article	IF	CITATIONS
307	Influence of Diffusion and Gravity on the Adhesion of a Two-component Mixture of Hard Spheres on a Flat Surface. Journal of Theoretical Biology, 1993, 163, 457-471.	1.7	13
308	Effect of hydrodynamic interactions on the distribution of adhering Brownian particles. Physical Review Letters, 1993, 70, 623-626.	7.8	64
309	Effect of the Bulk Diffusion on the Jamming Limit Configurations for Irreversible Adsorption. Europhysics Letters, 1993, 21, 135-140.	2.0	27
310	A Scanning-Angle Reflectometry Study of Surfaces Covered with Latex Particles. Europhysics Letters, 1993, 22, 543-548.	2.0	8
311	Statistical properties of surfaces covered by large spheres. Journal of Chemical Physics, 1993, 99, 7198-7208.	3.0	58
312	ADSORFHON OF HUMAN IgG MOLECULES ONTO GLASS BEADS: REVERSIBLE AND IRREVERSIBLE ASPECTS. Journal of Dispersion Science and Technology, 1992, 13, 379-398.	2.4	5
313	Competitive adsorption of human immunoglobulin G and albumin: consequences for structure and reactivity of the adsorbed layer Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9890-9894.	7.1	37
314	Configurations of adsorbed hard spheres after diffusion in a gravitational field Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9449-9453.	7.1	33
315	Influence of bulk diffusion on the adsorption of hard spheres on a flat surface. Journal of Chemical Physics, 1992, 97, 3813-3820.	3.0	81
316	Characteristic time scales for the adsorption process for fibrinogen on silica. Langmuir, 1992, 8, 514-517.	3.5	15
317	Random sequential addition of hard spheres. Molecular Physics, 1991, 72, 1397-1406.	1.7	73
318	Asymptotic behavior of particle deposition. Physical Review Letters, 1991, 66, 1603-1605.	7.8	55
319	Random sequential addition: A distribution function approach. Journal of Statistical Physics, 1991, 63, 167-202.	1.2	93
320	Properties of jamming configurations built up by the adsorption of Brownian particles onto solid surfaces. Physical Review A, 1991, 44, 6926-6928.	2.5	55
321	Adsorption/desorption of human serum albumin on hydroxyapatite: a critical analysis of the Langmuir model Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5557-5561.	7.1	72
322	Comment on 'Is there a glassy phase transition in two dimensions?'. Journal of Physics A, 1990, 23, 837-840.	1.6	4
323	Calculation of the reflection coefficients of interfaces: A scattering approach. Physical Review B, 1990, 42, 5516-5526.	3.2	4
324	Application of the geometric Gibbs equation: Hard spheres at high density. Journal of Chemical Physics, 1990, 92, 1258-1265.	3.0	18

#	Article	IF	CITATIONS
325	Generalized random sequential adsorption. Journal of Chemical Physics, 1990, 93, 8352-8360.	3.0	86
326	Hard spheres: Thermodynamics and geometry. Journal of Chemical Physics, 1989, 91, 2514-2524.	3.0	28
327	Random sequential adsorption of mixtures. Physical Review A, 1989, 40, 422-427.	2.5	74
328	Surface exclusion effects in adsorption processes. Journal of Chemical Physics, 1989, 91, 4401-4409.	3.0	330
329	Unexpected asymptotic behavior in random sequential adsorption of nonspherical particles. Physical Review A, 1989, 40, 4808-4811.	2.5	94
330	Reflection of light at a flat interface under normal incidence: A renewed macroscopic description. Physical Review B, 1989, 40, 10231-10237.	3.2	6
331	Microscopic study of the reflection of light on a stratified interface under any incidence: validity of the macroscopic approximation for the determination of a refractive index profile. Journal of Optics, 1989, 20, 157-167.	0.3	2
332	Kinetics of Random Sequential Adsorption. Physical Review Letters, 1989, 62, 175-178.	7.8	193
333	Application of Mössbauer spectroscopy to physical metallurgy: The role of light interstitial elements. Hyperfine Interactions, 1989, 47-48, 379-398.	0.5	11
334	Mössbauer measurements backscattering technique (CXMS) of laser irradiated cold forming tool steel (X210CR12). Hyperfine Interactions, 1989, 46, 541-548.	0.5	11
335	Structural changes within an adsorbed fibrinogen layer during the adsorption process: A study by scanning angle reflectometry. Colloids and Surfaces, 1988, 31, 89-103.	0.9	43
336	Microscopic description of the reflection of light under normal incidence: validity of the Lorentz approach to interpret a refractive index profile. Journal of Optics, 1988, 19, 207-219.	0.3	5
337	Random sequential adsorption of hard rods on a one-dimensional continuum surface. The Journal of Physical Chemistry, 1988, 92, 4824-4825.	2.9	13
338	Random sequential adsorption of squares on a lattice. The Journal of Physical Chemistry, 1988, 92, 4826-4829.	2.9	27
339	Adsorption and Desorption of Synthetic and Biological Macromolecules at Solid-Liquid Interfaces: Equilibrium and Kinetic Properties. ACS Symposium Series, 1987, , 222-238.	0.5	5
340	Reflectivity of an interface with a sigmoidal index profile. Surface Science, 1987, 191, 579-584.	1.9	3
341	Thermal denaturation of an adsorbed fibrinogen layer studied by reflectometry. Langmuir, 1987, 3, 1128-1131.	3.5	26
342	Reflectometry as a technique to study the adsorption of human fibrinogen at the silica/solution interface. Langmuir, 1987, 3, 1131-1135.	3.5	88

#	Article	IF	CITATIONS
343	Coupling between interfacial protein adsorption and bulk diffusion. A numerical study. Colloids and Surfaces, 1987, 24, 239-247.	0.9	22
344	Liquid-liquid phase separation and crystallization in binary polymer systems. Polymer, 1987, 28, 193-200.	3.8	108
345	Réflectométrie à angle variable pour l'étude des couches adsorbées. Revue De Physique Appliquée, 1 21, 741-745.	986, 0.4	25
346	Réflectométrie appliquée aux interfaces diffuses : possibilités et limites de la technique. Revue De Physique Appliquée, 1985, 20, 631-640.	0.4	13