Sileshi Gizachew Wubshet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160042/publications.pdf

Version: 2024-02-01

414414 361413 1,135 34 20 citations h-index papers

g-index 36 36 36 1411 docs citations times ranked citing authors all docs

32

#	Article	IF	Citations
1	Post-enzymatic hydrolysis heat treatment as an essential unit operation for collagen solubilization from poultry by-products. Food Chemistry, 2022, 382, 132201.	8.2	9
2	Multivariate correlation of infrared fingerprints and molecular weight distributions with bioactivity of poultry by-product protein hydrolysates. Journal of Functional Foods, 2022, 95, 105170.	3.4	4
3	Magnetic ligand fishing using immobilized DPP-IV for identification of antidiabetic ligands in lingonberry extract. PLoS ONE, 2021, 16, e0247329.	2.5	4
4	Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products. Molecules, 2021, 26, 5280.	3.8	10
5	Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chemistry, 2021, 358, 129830.	8.2	35
6	Fourier-transform infrared (FTIR) fingerprinting for quality assessment of protein hydrolysates. LWT - Food Science and Technology, 2021, 152, 112339.	5.2	20
7	Immobilized protease on magnetic particles for enzymatic protein hydrolysis of poultry by-products. LWT - Food Science and Technology, 2021, 152, 112327.	5 . 2	7
8	Average molecular weight, degree of hydrolysis and dry-film FTIR fingerprint of milk protein hydrolysates: Intercorrelation and application in process monitoring. Food Chemistry, 2020, 310, 125800.	8.2	31
9	Fourier-transform infrared spectroscopy for monitoring proteolytic reactions using dry-films treated with trifluoroacetic acid. Scientific Reports, 2020, 10, 7844.	3.3	21
10	Raman spectroscopy for quantification of residual calcium and total ash in mechanically deboned chicken meat. Food Control, 2019, 95, 267-273.	5.5	27
11	Bioanalytical Aspects in Enzymatic Protein Hydrolysis of By-Products. , 2019, , 225-258.		10
12	FTIR-based hierarchical modeling for prediction of average molecular weights of protein hydrolysates. Talanta, 2019, 205, 120084.	5 . 5	30
13	Peptides from chicken processing by-product inhibit DPP-IV and promote cellular glucose uptake: potential ingredients for T2D management. Food and Function, 2019, 10, 1619-1628.	4.6	17
14	Combined magnetic ligand fishing and high-resolution inhibition profiling for identification of $\hat{l}\pm$ -glucosidase inhibitory ligands: A new screening approach based on complementary inhibition and affinity profiles. Talanta, 2019, 200, 279-287.	5. 5	27
15	Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: a Spectroscopic Approach. Food and Bioprocess Technology, 2018, 11, 2032-2043.	4.7	17
16	Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. Topics in Current Chemistry, 2017, 375, 53.	5.8	56
17	Fourier-transform infrared spectroscopy for characterization of protein chain reductions in enzymatic reactions. Analyst, The, 2017, 142, 2812-2818.	3. 5	50
18	FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. Analytical Methods, 2017, 9, 4247-4254.	2.7	54

#	Article	IF	Citations
19	Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. ELife, 2017, 6, .	6.0	97
20	Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. Topics in Current Chemistry Collections, 2017, , 123-150.	0.5	14
21	Oxidation and cyclization of casbene in the biosynthesis of <i>Euphorbia</i> factors from mature seeds of <i>Euphorbia lathyris</i> L Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5082-9.	7.1	76
22	High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida. Fìtoterapìâ, 2016, 110, 52-58.	2.2	50
23	Identification of PTP1B and î±-Glucosidase Inhibitory Serrulatanes from <i>Eremophila</i> spp. by Combined use of Dual High-Resolution PTP1B and î±-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR. Journal of Natural Products, 2016, 79, 1063-1072.	3.0	54
24	Characterization of midazolam metabolism in locusts: the role of a CYP3A4-like enzyme in the formation of $1\hat{a}\in^2$ -OH and 4-OH midazolam. Xenobiotica, 2016, 46, 99-107.	1.1	18
25	Combined Use of High-Resolution α-Glucosidase Inhibition Profiling and High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry–Solid-Phase Extraction–Nuclear Magnetic Resonance Spectroscopy for Investigation of Antidiabetic Principles in Crude Plant Extracts. Journal of Agricultural and Food Chemistry, 2015, 63, 2257-2263.	5. 2	49
26	Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae. Journal of Chromatography A, 2015, 1408, 125-132.	3.7	43
27	Fungal plasma membrane H+-ATPase inhibitory activity of o-hydroxybenzylated flavanones and chalcones from Uvaria chamae P. Beauv Fìtoterapìâ, 2015, 105, 102-106.	2.2	15
28	High-resolution bioactivity profiling combined with HPLC–HRMS–SPE–NMR: α-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae). Phytochemistry, 2015, 116, 246-252.	2.9	34
29	Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from <i>Eugenia catharinae</i> . Journal of Natural Products, 2015, 78, 2657-2665.	3.0	68
30	High-Resolution Screening Combined with HPLC-HRMS-SPE-NMR for Identification of Fungal Plasma Membrane H ⁺ -ATPase Inhibitors from Plants. Journal of Agricultural and Food Chemistry, 2014, 62, 5595-5602.	5.2	28
31	Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules. Marine Drugs, 2014, 12, 2228-2244.	4.6	72
32	High-Resolution Screening Combined with HPLC-HRMS-SPE-NMR for Identification of Potential Health-Promoting Constituents in Sea Aster and Searocketâ€"New Nordic Food Ingredients. Journal of Agricultural and Food Chemistry, 2013, 61, 8616-8623.	5. 2	44
33	Targeting high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance analysis with high-resolution radical scavenging profiles—Bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii. lournal of Chromatography A. 2013. 1302. 34-39.	3.7	39
34	Encoderâ€decoder neural networks for predicting future FTIR spectra – application to enzymatic protein hydrolysis. Journal of Biophotonics, 0, , .	2.3	1