
Sileshi Gizachew Wubshet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. ELife, 2017, 6, .	6.0	97
2	Oxidation and cyclization of casbene in the biosynthesis of <i>Euphorbia</i> factors from mature seeds of <i>Euphorbia lathyris</i> L. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5082-9.	7.1	76
3	Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules. Marine Drugs, 2014, 12, 2228-2244.	4.6	72
4	Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from <i>Eugenia catharinae</i> . Journal of Natural Products, 2015, 78, 2657-2665.	3.0	68
5	Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. Topics in Current Chemistry, 2017, 375, 53.	5.8	56
6	Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from <i>Eremophila</i> spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR. Journal of Natural Products, 2016, 79, 1063-1072.	3.0	54
7	FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. Analytical Methods, 2017, 9, 4247-4254.	2.7	54
8	High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida. Fìtoterapìâ, 2016, 110, 52-58.	2.2	50
9	Fourier-transform infrared spectroscopy for characterization of protein chain reductions in enzymatic reactions. Analyst, The, 2017, 142, 2812-2818.	3.5	50
10	Combined Use of High-Resolution α-Glucosidase Inhibition Profiling and High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry–Solid-Phase Extraction–Nuclear Magnetic Resonance Spectroscopy for Investigation of Antidiabetic Principles in Crude Plant Extracts. Journal of Agricultural and Food Chemistry, 2015, 63, 2257-2263.	5.2	49
11	High-Resolution Screening Combined with HPLC-HRMS-SPE-NMR for Identification of Potential Health-Promoting Constituents in Sea Aster and Searocket—New Nordic Food Ingredients. Journal of Agricultural and Food Chemistry, 2013, 61, 8616-8623.	5.2	44
12	Triple aldose reductase∫l±-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae. Journal of Chromatography A, 2015, 1408, 125-132.	3.7	43
13	Targeting high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance analysis with high-resolution radical scavenging profiles—Bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii. lournal of Chromatography A. 2013. 1302. 34-39.	3.7	39
14	Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chemistry, 2021, 358, 129830.	8.2	35
15	High-resolution bioactivity profiling combined with HPLC–HRMS–SPE–NMR: α-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae). Phytochemistry, 2015, 116, 246-252.	2.9	34
16	Average molecular weight, degree of hydrolysis and dry-film FTIR fingerprint of milk protein hydrolysates: Intercorrelation and application in process monitoring. Food Chemistry, 2020, 310, 125800.	8.2	31
17	FTIR-based hierarchical modeling for prediction of average molecular weights of protein hydrolysates. Talanta, 2019, 205, 120084.	5.5	30
18	High-Resolution Screening Combined with HPLC-HRMS-SPE-NMR for Identification of Fungal Plasma Membrane H ⁺ -ATPase Inhibitors from Plants. Journal of Agricultural and Food Chemistry, 2014, 62, 5595-5602.	5.2	28

#	Article	IF	CITATIONS
19	Raman spectroscopy for quantification of residual calcium and total ash in mechanically deboned chicken meat. Food Control, 2019, 95, 267-273.	5.5	27
20	Combined magnetic ligand fishing and high-resolution inhibition profiling for identification of α-glucosidase inhibitory ligands: A new screening approach based on complementary inhibition and affinity profiles. Talanta, 2019, 200, 279-287.	5.5	27
21	Fourier-transform infrared spectroscopy for monitoring proteolytic reactions using dry-films treated with trifluoroacetic acid. Scientific Reports, 2020, 10, 7844.	3.3	21
22	Fourier-transform infrared (FTIR) fingerprinting for quality assessment of protein hydrolysates. LWT - Food Science and Technology, 2021, 152, 112339.	5.2	20
23	Characterization of midazolam metabolism in locusts: the role of a CYP3A4-like enzyme in the formation of 1′-OH and 4-OH midazolam. Xenobiotica, 2016, 46, 99-107.	1.1	18
24	Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: a Spectroscopic Approach. Food and Bioprocess Technology, 2018, 11, 2032-2043.	4.7	17
25	Peptides from chicken processing by-product inhibit DPP-IV and promote cellular glucose uptake: potential ingredients for T2D management. Food and Function, 2019, 10, 1619-1628.	4.6	17
26	Fungal plasma membrane H+-ATPase inhibitory activity of o-hydroxybenzylated flavanones and chalcones from Uvaria chamae P. Beauv Fìtoterapìâ, 2015, 105, 102-106.	2.2	15
27	Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. Topics in Current Chemistry Collections, 2017, , 123-150.	0.5	14
28	Bioanalytical Aspects in Enzymatic Protein Hydrolysis of By-Products. , 2019, , 225-258.		10
29	Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products. Molecules, 2021, 26, 5280.	3.8	10
30	Post-enzymatic hydrolysis heat treatment as an essential unit operation for collagen solubilization from poultry by-products. Food Chemistry, 2022, 382, 132201.	8.2	9
31	Immobilized protease on magnetic particles for enzymatic protein hydrolysis of poultry by-products. LWT - Food Science and Technology, 2021, 152, 112327.	5.2	7
32	Magnetic ligand fishing using immobilized DPP-IV for identification of antidiabetic ligands in lingonberry extract. PLoS ONE, 2021, 16, e0247329.	2.5	4
33	Multivariate correlation of infrared fingerprints and molecular weight distributions with bioactivity of poultry by-product protein hydrolysates. Journal of Functional Foods, 2022, 95, 105170.	3.4	4
34	Encoderâ€decoder neural networks for predicting future FTIR spectra – application to enzymatic protein hydrolysis. Journal of Biophotonics, 0, , .	2.3	1