Jiangang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160006/publications.pdf

Version: 2024-02-01

687363 677142 23 507 13 22 h-index citations g-index papers 23 23 23 446 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of a bioflocculant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal. Bioresource Technology, 2013, 137, 226-232.	9.6	76
2	Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater. Chemosphere, 2016, 155, 163-169.	8.2	50
3	Production of a bioflocculant from methanol wastewater and its application in arsenite removal. Chemosphere, 2015, 141, 274-281.	8.2	49
4	Production and Characteristics of a Bioflocculant by Klebsiella pneumoniae YZ-6 Isolated from Human Saliva. Applied Biochemistry and Biotechnology, 2014, 172, 1282-1292.	2.9	46
5	Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. Journal of Environmental Management, 2016, 172, 71-76.	7.8	34
6	Production of a bioflocculant from chromotropic acid waste water and its application in steroid estrogen removal. Colloids and Surfaces B: Biointerfaces, 2014, 122, 729-737.	5.0	31
7	ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nature Communications, 2016, 7, 11057.	12.8	31
8	Visual degumming process of ramie fiber using a microbial consortium RAMCD407. Cellulose, 2019, 26, 3513-3528.	4.9	30
9	Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity. Colloids and Surfaces B: Biointerfaces, 2018, 161, 636-644.	5.0	25
10	Bacterial cellulose production from terylene ammonia hydrolysate by Taonella mepensis WT-6. International Journal of Biological Macromolecules, 2021, 166, 251-258.	7.5	24
11	Investigation of the structure of ramie fibers by enzymatic peeling. Cellulose, 2019, 26, 2955-2968.	4.9	17
12	Biotransformation of nylon-6,6 hydrolysate to bacterial cellulose. Green Chemistry, 2021, 23, 7805-7815.	9.0	17
13	Production of a bioflocculant from ramie biodegumming wastewater using a biomass-degrading strain and its application in the treatment of pulping wastewater. Chemosphere, 2020, 253, 126727.	8.2	15
14	Bioconversion of citrus peel wastes into bioflocculants and their application in the removal of microcystins. Science of the Total Environment, 2020, 715, 136885.	8.0	12
15	Production of a value added compound from the H-acid waste water—Bioflocculants by Klebsiella pneumoniae. Colloids and Surfaces B: Biointerfaces, 2014, 122, 583-590.	5.0	11
16	Bioconversion of lignocellulose and simultaneous production of cellulase, ligninase and bioflocculants by Alcaligenes faecalis-X3. Process Biochemistry, 2020, 90, 58-65.	3.7	9
17	Production of a bioflocculant using old polyester fibre as a fermentation feedstock and its use in treatment of polyester alkali-peeling wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105455.	6.7	9
18	Characteristics of methane and bioflocculant production by Methanosarcina spelaei RK-23. International Journal of Hydrogen Energy, 2020, 45, 11569-11576.	7.1	6

#	Article	IF	CITATIONS
19	Evaluation of hemocompatibility and hemostasis of a bioflocculant. Colloids and Surfaces B: Biointerfaces, 2017, 159, 712-719.	5.0	5
20	Silkâ€inspired polyurethane containing GlyAlaGlyAla tetrapeptide. II. physical properties and structure. Journal of Applied Polymer Science, 2013, 130, 631-637.	2.6	4
21	Preparation of a bacterial flocculant by using caprolactam as a sole substrate and its application in amoxicillin removal. Journal of Environmental Management, 2021, 294, 113026.	7.8	3
22	Sequential fermentation strategy improves microbial conversion of waste jasmine flower to bacterial cellulose with antibacterial properties. Industrial Crops and Products, 2022, 185, 115147.	5. 2	3
23	Silkâ€inspired polyurethane containing glyalaglyala tetrapeptide. III. morphological, thermal, and mechanical features of electrosprayed and electrospun deposition. Journal of Applied Polymer Science, 2014, 131, .	2.6	0