
MichaÅ, Hapka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160004/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures. Journal of Chemical Physics, 2014, 140, 244302.	1.2	82
2	Optical absorption spectra of gold clusters Aun (n = 4, 6, 8,12, 20) from long-range corrected functionals with optimal tuning. Journal of Chemical Physics, 2012, 137, 114302.	1.2	60
3	Observation of orbiting resonances in He(3S1) + NH3 Penning ionization. Journal of Chemical Physics, 2015, 142, 164305.	1.2	57
4	Symmetry-adapted perturbation theory based on unrestricted Kohn-Sham orbitals for high-spin open-shell van der Waals complexes. Journal of Chemical Physics, 2012, 137, 164104.	1.2	42
5	Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. Journal of Chemical Theory and Computation, 2021, 17, 7575-7585.	2.3	26
6	First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: Application to Penning-ionizing systems. Journal of Chemical Physics, 2013, 139, 014307.	1.2	18
7	Tuned range-separated hybrid functionals in the symmetry-adapted perturbation theory. Journal of Chemical Physics, 2014, 141, 134120.	1.2	18
8	Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers. Journal of Chemical Theory and Computation, 2021, 17, 5538-5555.	2.3	18
9	Second-Order Dispersion Energy Based on Multireference Description of Monomers. Journal of Chemical Theory and Computation, 2019, 15, 1016-1027.	2.3	17
10	Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches. Journal of Chemical Theory and Computation, 2017, 13, 5404-5419.	2.3	16
11	Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical. Journal of Physical Chemistry Letters, 2019, 10, 4668-4674.	2.1	16
12	Theoretical Studies of Potential Energy Surface and Bound States of the Strongly Bound He(¹ S)–BeO (¹ Σ ⁺) Complex. Journal of Physical Chemistry A, 2013, 117, 6657-6663.	1.1	15
13	Interaction of Boron–Nitrogen Doped Benzene Isomers with Water. Journal of Physical Chemistry A, 2016, 120, 6287-6302.	1.1	15
14	The nature of three-body interactions in DFT: Exchange and polarization effects. Journal of Chemical Physics, 2017, 147, 084106.	1.2	15
15	Long-range-corrected multiconfiguration density functional with the on-top pair density. Journal of Chemical Physics, 2020, 152, 094102.	1.2	15
16	Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts. Journal of Chemical Physics, 2014, 140, 244313.	1.2	14
17	Differential action of methylselenocysteine in control and alloxan-diabetic rabbits. Chemico-Biological Interactions, 2009, 177, 161-171.	1.7	13
18	Second-Order Exchange-Dispersion Energy Based on a Multireference Description of Monomers. Journal of Chemical Theory and Computation, 2019, 15, 6712-6723.	2.3	11

МіснаÅ, Нарка

#	Article	IF	CITATIONS
19	Reduced Density Matrix-Driven Complete Active Apace Self-Consistent Field Corrected for Dynamic Correlation from the Adiabatic Connection. Journal of Chemical Theory and Computation, 2020, 16, 4351-4360.	2.3	11
20	Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals. Journal of Physical Chemistry Letters, 2022, 13, 4570-4578.	2.1	11
21	Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3. Journal of Chemical Physics, 2016, 144, 221102.	1.2	10
22	Employing Range Separation on the meta-GGA Rung: New Functional Suitable for Both Covalent and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2016, 12, 3662-3673.	2.3	10
23	How and Why Does Helium Permeate Nonporous Arsenolite Under High Pressure?. ChemPhysChem, 2018, 19, 857-864.	1.0	10
24	Local Enhancement of Dynamic Correlation in Excited States: Fresh Perspective on Ionicity and Development of Correlation Density Functional Approximation Based on the On-Top Pair Density. Journal of Physical Chemistry Letters, 2020, 11, 5883-5889.	2.1	10
25	A density functional theory approach to noncovalent interactions via interacting monomer densities. Physical Chemistry Chemical Physics, 2010, 12, 14686.	1.3	9
26	Rangeâ€separated multiconfigurational density functional theory methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 0, , e1566.	6.2	9
27	On the Nature of Luminescence Thermochromism of Multinuclear Copper(I) Benzoate Complexes in the Crystalline State. Crystals, 2019, 9, 36.	1.0	8
28	How Much Dispersion Energy Is Included in the Multiconfigurational Interaction Energy?. Journal of Chemical Theory and Computation, 2020, 16, 6280-6293.	2.3	8
29	Assessment of SAPT(DFT) with meta-GGA functionals. Journal of Molecular Modeling, 2020, 26, 102.	0.8	7
30	Toward Heterolytic Bond Dissociation of Dihydrogen: The Study of Hydrogen in Arsenolite under High Pressure. Journal of Physical Chemistry C, 2019, 123, 16868-16872.	1.5	6
31	An efficient implementation of time-dependent linear-response theory for strongly orthogonal geminal wave function models. Journal of Chemical Physics, 2022, 156, 174102.	1.2	6
32	Interactions of ThO(X) with He, Ne and Ar from the ab initio coupled cluster and symmetry adapted perturbation theory calculations. Chemical Physics, 2012, 399, 50-58.	0.9	5
33	Noncovalent interactions determine the conformation of aurophilic complexes with 2-mercapto-4-methyl-5-thiazoleacetic acid ligands. Dalton Transactions, 2015, 44, 13641-13650.	1.6	5
34	Experimental and Theoretical Studies of Low-Energy Penning Ionization of NH3, CH3F, and CHF3. ChemPhysChem, 2016, 17, 3776-3782.	1.0	5
35	Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers. Journal of Chemical Physics, 2021, 154, 134106.	1.2	5
36	Theoretical study of the buffer-gas cooling and trapping of CrH(X6Σ+) by 3He atoms. Journal of Chemical Physics, 2016, 145, 214305.	1.2	4

МіснаÅ, Нарка

#	Article	IF	CITATIONS
37	Molecular multibond dissociation with small complete active space augmented by correlation density functionals. Journal of Chemical Physics, 2020, 152, 204118.	1.2	4
38	Dispersion Interactions in Exciton-Localized States. Theory and Applications to π‑'Ï€* and nâ^'Ï€* Excited States. Journal of Chemical Theory and Computation, 2022, 18, 3497-3511.	2.3	4
39	The effect of weak intermolecular interactions on the nuclear magnetic resonance shielding constant in N ₂ . Magnetic Resonance in Chemistry, 2020, 58, 245-248.	1.1	2
40	In pursuit of universality. Nature Reviews Chemistry, 2021, 5, 520-521.	13.8	1