
Marcela Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11598986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of Phase Separation in Oat β-glucan/Milk Mixtures Studied with Ultrasonic and Diffusing Wave Spectroscopy. Food Biophysics, 2015, 10, 66-75.	1.4	8
2	Physico-chemical properties of casein micelles in unheated skim milk concentrated by osmotic stressing: Interactions and changes in the composition ofÂthe serum phase. Food Hydrocolloids, 2014, 34, 46-53.	5.6	25
3	Phase behaviour, rheological properties, and microstructure of oat Î ² -glucan-milk mixtures. Food Hydrocolloids, 2014, 41, 274-280.	5.6	49
4	Heating of Milk Before or After Homogenization Changes its Coagulation Behaviour During Acidification. Food Biophysics, 2013, 8, 81-89.	1.4	12
5	On line diffusing wave spectroscopy during rheological measurements: A new instrumental setup to measure colloidal instability and structure formation in situ. Food Research International, 2013, 54, 367-372.	2.9	6
6	Effect of concentration and incubation temperature on the acid induced aggregation of soymilk. Food Hydrocolloids, 2013, 30, 463-469.	5.6	62
7	Combined acid―and rennetâ€induced gelation of a mixed soya milk–cow's milk system. International Journal of Food Science and Technology, 2013, 48, 2306-2314.	1.3	12
8	Physico-Chemical Characterization of Soymilk Particles as a Function of Their Volume Fraction: Comparison with Theoretical Systems. Food Biophysics, 2012, 7, 244-257.	1.4	9
9	Addition of sodium caseinate to skim milk inhibits rennet-induced aggregation of casein micelles. Food Hydrocolloids, 2012, 26, 405-411.	5.6	30
10	Probing protein conformations at the oil droplet–water interface using single-molecule force spectroscopy. Soft Matter, 2011, 7, 10274.	1.2	10
11	Gelation of casein micelles in β-casein reduced milk prepared using membrane filtration. Food Research International, 2011, 44, 667-671.	2.9	14
12	Coagulation properties of ultrafiltered milk retentates measured using rheology and diffusing wave spectroscopy. Food Research International, 2011, 44, 951-956.	2.9	68
13	Does ultrafiltration have a lasting effect on the physico-chemical properties of the casein micelles?. Dairy Science and Technology, 2011, 91, 151-170.	2.2	42
14	Acid coagulation behavior of homogenized milk: effect of interacting and non-interacting droplets observed by rheology and diffusing wave spectroscopy. Dairy Science and Technology, 2011, 91, 185-201.	2.2	20
15	Rennet coagulation properties of milk in the presence of oil droplets stabilised by a combination of sodium caseinate and whey protein isolate. Dairy Science and Technology, 2011, 91, 719-737.	2.2	4
16	Effect of Soy Protein Subunit Composition on the Rheological Properties of Soymilk during Acidification. Food Biophysics, 2011, 6, 26-36.	1.4	36
17	Changes in the calcium cluster distribution of ultrafiltered and diafiltered fresh skim milk as observed by Small Angle Neutron Scattering. Journal of Dairy Research, 2011, 78, 349-356.	0.7	32
18	Rennet-induced aggregation of homogenized milk: Impact of the presence of fat globules on the structure of casein gels. Dairy Science and Technology, 2010, 90, 623-639.	2.2	17

MARCELA ALEXANDER

#	Article	IF	CITATIONS
19	Phase Separation Behavior of Caseins in Milk Containing Flaxseed Gum and κ-Carrageenan: A Light-Scattering and Ultrasonic Spectroscopy Study. Food Biophysics, 2010, 5, 138-147.	1.4	17
20	Influence of Cross-linked Waxy Maize Starch on the Aggregation Behavior of Casein Micelles During Acid-induced Gelation. Food Biophysics, 2010, 5, 227-237.	1.4	17
21	Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification. Journal of Colloid and Interface Science, 2010, 351, 493-500.	5.0	19
22	Diffusing wave spectroscopy and rheological studies of rennet-induced gelation ofÂskim milk in the presence of pectin and l̂º-carrageenan. International Dairy Journal, 2010, 20, 328-335.	1.5	27
23	Sol gel transitions during acid gelation of milk containing modified waxy maize starch. Differences between chemical and bacterial acidification measured using rheological and spectroscopic techniques. International Dairy Journal, 2010, 20, 785-791.	1.5	15
24	Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocolloids, 2009, 23, 611-618.	5.6	66
25	Sodium caseinate-stabilized fat globules inhibition of the rennet-induced gelation of casein micelles studied by Diffusing Wave Spectroscopy. Food Hydrocolloids, 2009, 23, 1134-1138.	5.6	11
26	The impact of the concentration of casein micelles and whey protein-stabilized fat globules on the rennet-induced gelation of milk. Colloids and Surfaces B: Biointerfaces, 2009, 68, 154-162.	2.5	26
27	Interactions between flaxseed gums and WPI-stabilized emulsion droplets assessed in situ using diffusing wave spectroscopy. Colloids and Surfaces B: Biointerfaces, 2009, 68, 145-153.	2.5	14
28	Diffusing Wave and Ultrasonic Spectroscopy of Rennet-Induced Gelation of Milk in the Presence of High-Methoxyl Pectin. Food Biophysics, 2009, 4, 249-259.	1.4	18
29	Investigation of particle dynamics in gels involving casein micelles: A diffusing wave spectroscopy and rheology approach. Food Hydrocolloids, 2008, 22, 1124-1134.	5.6	21
30	Investigation of interactions between two different polysaccharides with sodium caseinate-stabilized emulsions using complementary spectroscopic techniques: Diffusing wave and ultrasonic spectroscopy. Food Hydrocolloids, 2008, 22, 47-55.	5.6	16
31	Food emulsions studied by DWS: recent advances. Trends in Food Science and Technology, 2008, 19, 67-75.	7.8	87
32	Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. Food Research International, 2008, 41, 964-972.	2.9	44
33	Diffusing Wave Spectroscopy Study of the Colloidal Interactions Occurring between Casein Micelles and Emulsion Droplets:  Comparison to Hard-Sphere Behavior. Langmuir, 2008, 24, 3794-3800.	1.6	21
34	Comparison on the Effect of High-Methoxyl Pectin or Soybean-Soluble Polysaccharide on the Stability of Sodium Caseinate-Stabilized Oil/Water Emulsions. Journal of Agricultural and Food Chemistry, 2007, 55, 6270-6278.	2.4	44
35	Acid Gelation in Heated and Unheated Milks:Â Interactions between Serum Protein Complexes and the Surfaces of Casein Micelles. Journal of Agricultural and Food Chemistry, 2007, 55, 4160-4168.	2.4	85
36	Diffusing Wave Spectroscopy of aggregating and gelling systems. Current Opinion in Colloid and Interface Science, 2007, 12, 179-186.	3.4	38

#	Article	IF	CITATIONS
37	A diffusing wave spectroscopy study of the dynamics of interactions between high methoxyl pectin and sodium caseinate emulsions during acidification. Colloids and Surfaces B: Biointerfaces, 2007, 59, 164-170.	2.5	15
38	The rennet coagulation mechanism of skim milk as observed by transmission diffusing wave spectroscopy. Journal of Colloid and Interface Science, 2007, 308, 364-373.	5.0	70
39	The interaction of casein micelles with κ-carrageenan studied by diffusing wave spectroscopy. Food Hydrocolloids, 2007, 21, 128-136.	5.6	17
40	Real-Time Determination of Structural Changes of Sodium Caseinate-Stabilized Emulsions Containing Pectin Using High Resolution Ultrasonic Spectroscopy. Food Biophysics, 2007, 2, 67-75.	1.4	6
41	Spectroscopic methods to determine inÂsitu changes in dairy systems – ultrasonic and light scattering. Dairy Science and Technology, 2007, 87, 435-442.	0.9	6
42	Dynamic Light Scattering Techniques and Their Applications in Food Science. Food Biophysics, 2006, 1, 2-13.	1.4	84
43	Diffusing wave spectroscopy of gelling food systems: The importance of the photon transport mean free path (I*) parameter. Food Hydrocolloids, 2006, 20, 325-331.	5.6	37
44	In situ study of flocculation of whey protein-stabilized emulsions caused by addition of high methoxyl pectin. Food Hydrocolloids, 2006, 20, 293-298.	5.6	39
45	Interactions of High Methoxyl Pectin with Whey Proteins at Oil/Water Interfaces at Acid pH. Journal of Agricultural and Food Chemistry, 2005, 53, 2236-2241.	2.4	38
46	Interactions between Denatured Milk Serum Proteins and Casein Micelles Studied by Diffusing Wave Spectroscopy. Langmuir, 2005, 21, 11380-11386.	1.6	58
47	The ultrasonic properties of skim milk related to the release of calcium from casein micelles during acidification. International Dairy Journal, 2005, 15, 1105-1112.	1.5	31
48	Stabilization of Caseinate-Covered Oil Droplets during Acidification with High Methoxyl Pectin. Journal of Agricultural and Food Chemistry, 2005, 53, 8600-8606.	2.4	44
49	Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet. Colloids and Surfaces B: Biointerfaces, 2004, 38, 83-90.	2.5	96
50	The application of ultrasonic spectroscopy to the study of the gelation of milk components. Food Research International, 2004, 37, 557-565.	2.9	52