
Samuel D Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11598378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacometric analyses to characterize the effect of CSL112 on apolipoprotein Aâ€I and cholesterol efflux capacity in acute myocardial infarction patients. British Journal of Clinical Pharmacology, 2021, 87, 2558-2571.	1.1	9
2	Co-administration of CSL112 (apolipoprotein A-I [human]) with atorvastatin and alirocumab is not associated with increased hepatotoxic or toxicokinetic effects in rats. Toxicology and Applied Pharmacology, 2021, 422, 115557.	1.3	2
3	Nascent HDL (High-Density Lipoprotein) Discs Carry Cholesterol to HDL Spheres. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1182-1194.	1.1	10
4	Moderate Renal Impairment Does Not Impact the Ability of CSL112 (Apolipoprotein Aâ€I [Human]) to Enhance Cholesterol Efflux Capacity. Journal of Clinical Pharmacology, 2019, 59, 427-436.	1.0	10
5	Pharmacokinetics and Safety of CSL112 (Apolipoprotein Aâ€I [Human]) in Adults With Moderate Renal Impairment and Normal Renal Function. Clinical Pharmacology in Drug Development, 2019, 8, 628-636.	0.8	13
6	CSL112 (Apolipoprotein A-I [Human]) Enhances Cholesterol Efflux Similarly in Healthy Individuals and Stable Atherosclerotic Disease Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 953-963.	1.1	54
7	Evaluation of potential antiplatelet effects of CSL112 (Apolipoprotein A-I [Human]) in patients with atherosclerosis: results from a phase 2a study. Journal of Thrombosis and Thrombolysis, 2018, 45, 469-476.	1.0	11
8	Circulating HDL levels control hypothalamic astrogliosis via apoA-I. Journal of Lipid Research, 2018, 59, 1649-1659.	2.0	7
9	Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 890-900.	1.2	9
10	Enhanced HDL Functionality in Small HDL Species Produced Upon Remodeling of HDL by Reconstituted HDL, CSL112. Circulation Research, 2016, 119, 751-763.	2.0	85
11	Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Science Translational Medicine, 2016, 8, 333ra50.	5.8	271
12	Reconstituted highâ€density lipoprotein can elevate plasma alanine aminotransferase by transient depletion of hepatic cholesterol: role of the phospholipid component. Journal of Applied Toxicology, 2016, 36, 1038-1047.	1.4	15
13	Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1027-1036.	1.8	62
14	Reconstituted High-Density Lipoprotein Attenuates Cholesterol Crystal–Induced Inflammatory Responses by Reducing Complement Activation. Journal of Immunology, 2015, 195, 257-264.	0.4	27
15	Infusion of Reconstituted Highâ€Density Lipoprotein, CSL112, in Patients With Atherosclerosis: Safety and Pharmacokinetic Results From a Phase 2a Randomized Clinical Trial. Journal of the American Heart Association, 2015, 4, e002171.	1.6	89
16	A multiple ascending dose study of CSL112, an infused formulation of ApoAâ€I. Journal of Clinical Pharmacology, 2014, 54, 301-310.	1.0	74
17	High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nature Immunology, 2014, 15, 152-160.	7.0	337
18	CSL112 Enhances Biomarkers of Reverse Cholesterol Transport After Single and Multiple Infusions in Healthy Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2106-2114.	1.1	91

#	Article	IF	CITATIONS
19	11β-HSD1 inhibition reduces atherosclerosis in mice by altering proinflammatory gene expression in the vasculature. Physiological Genomics, 2013, 45, 47-57.	1.0	28
20	Novel Formulation of a Reconstituted High-Density Lipoprotein (CSL112) Dramatically Enhances ABCA1-Dependent Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2202-2211.	1.1	106
21	Niacin Lipid Efficacy Is Independent of Both the Niacin Receptor GPR109A and Free Fatty Acid Suppression. Science Translational Medicine, 2012, 4, 148ra115.	5.8	102
22	Reconstituted HDL Elicits Marked Changes in Plasma Lipids Following Single-Dose Injection in C57Bl/6 Mice. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17, 315-323.	1.0	23
23	A Gene Expression Signature That Classifies Human Atherosclerotic Plaque by Relative Inflammation Status. Circulation: Cardiovascular Genetics, 2011, 4, 595-604.	5.1	59
24	NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464, 1357-1361.	13.7	3,130
25	Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G). Journal of Lipid Research, 2009, 50, 908-914.	2.0	25
26	Bis-aryl triazoles as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2799-2804.	1.0	29
27	Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochemical and Biophysical Research Communications, 2008, 377, 987-991.	1.0	246
28	Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. Journal of Lipid Research, 2008, 49, 1333-1343.	2.0	42
29	Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochemical and Biophysical Research Communications, 2007, 355, 1075-1080.	1.0	62
30	Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation. Journal of Biological Chemistry, 2007, 282, 20502-20512.	1.6	166
31	Nicotinic Acid Receptor Agonists Differentially Activate Downstream Effectors. Journal of Biological Chemistry, 2007, 282, 18028-18036.	1.6	88
32	Different roles of liver X receptor α and β in lipid metabolism: Effects of an α-selective and a dual agonist in mice deficient in each subtype. Biochemical Pharmacology, 2006, 71, 453-463.	2.0	143
33	Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6682-6687.	3.3	263
34	Adamantyl triazoles as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4359-4362.	1.0	97
35	11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. Journal of Experimental Medicine, 2005, 202, 517-527.	4.2	353
36	(d)-β-Hydroxybutyrate Inhibits Adipocyte Lipolysis via the Nicotinic Acid Receptor PUMA-G. Journal of Biological Chemistry, 2005, 280, 26649-26652.	1.6	520

#	Article	IF	CITATIONS
37	Increased hypercholesterolemia and atherosclerosis in mice lacking both ApoE and leptin receptor. Atherosclerosis, 2005, 181, 251-259.	0.4	76
38	The Farnesoid X Receptor Controls Gene Expression in a Ligand- and Promoter-selective Fashion. Journal of Biological Chemistry, 2004, 279, 8856-8861.	1.6	177
39	Polyunsaturated Fatty Acids Are FXR Ligands and Differentially Regulate Expression of FXR Targets. DNA and Cell Biology, 2004, 23, 519-526.	0.9	112
40	Farnesoid X Receptor Activates Transcription of the Phospholipid Pump MDR3. Journal of Biological Chemistry, 2003, 278, 51085-51090.	1.6	195
41	Human Kininogen Gene Is Transactivated by the Farnesoid X Receptor. Journal of Biological Chemistry, 2003, 278, 28765-28770.	1.6	34
42	Guggulsterone Is a Farnesoid X Receptor Antagonist in Coactivator Association Assays but Acts to Enhance Transcription of Bile Salt Export Pump. Journal of Biological Chemistry, 2003, 278, 10214-10220.	1.6	208
43	The Amino Acid Residues Asparagine 354 and Isoleucine 372 of Human Farnesoid X Receptor Confer the Receptor with High Sensitivity to Chenodeoxycholate. Journal of Biological Chemistry, 2002, 277, 25963-25969.	1.6	32
44	A Novel Liver X Receptor Agonist Establishes Species Differences in the Regulation of Cholesterol 7α-Hydroxylase (CYP7a). Endocrinology, 2002, 143, 2548-2558.	1.4	68
45	Simvastatin Reduces Neointimal Thickening in Low-Density Lipoprotein Receptor–Deficient Mice After Experimental Angioplasty Without Changing Plasma Lipids. Circulation, 2002, 106, 20-23.	1.6	89
46	A Potent Synthetic LXR Agonist Is More Effective than Cholesterol Loading at Inducing ABCA1 mRNA and Stimulating Cholesterol Efflux. Journal of Biological Chemistry, 2002, 277, 10021-10027.	1.6	111
47	Lithocholic Acid Decreases Expression of Bile Salt Export Pump through Farnesoid X Receptor Antagonist Activity. Journal of Biological Chemistry, 2002, 277, 31441-31447.	1.6	159
48	Deficiency in sPLA2 does not affect HDL levels or atherosclerosis in mice. Biochemical and Biophysical Research Communications, 2002, 294, 88-94.	1.0	13
49	Protein-disulfide isomerase is a component of an NBD-cholesterol monomerizing protein complex from hamster small intestine. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1581, 100-108.	1.2	13
50	Bacterial lipopolysaccharide induces expression of ABCA1 but not ABCG1 via an LXR-independent pathway. Journal of Lipid Research, 2002, 43, 952-959.	2.0	43
51	ApoEâ^'/â^' Mice Develop Atherosclerosis in the Absence of Complement Component C5. Biochemical and Biophysical Research Communications, 2001, 286, 164-170.	1.0	60
52	Induction of 11β-hydroxysteroid dehydrogenase type 1 but not -2 in human aortic smooth muscle cells by inflammatory stimuli. Journal of Steroid Biochemistry and Molecular Biology, 2001, 77, 117-122.	1.2	98
53	Production of Matrix Metalloproteinase-9 in CaCO-2 Cells in Response to Inflammatory Stimuli. Journal of Interferon and Cytokine Research, 2001, 21, 93-98.	0.5	55
54	Dual Mechanisms of ABCA1 Regulation by Geranylgeranyl Pyrophosphate. Journal of Biological Chemistry, 2001, 276, 48702-48708.	1.6	88

#	Article	IF	CITATIONS
55	Simvastatin Has Anti-Inflammatory and Antiatherosclerotic Activities Independent of Plasma Cholesterol Lowering. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 115-121.	1.1	357
56	11β-Hydroxysteroid Dehydrogenase Type 1 Is Induced in Human Monocytes upon Differentiation to Macrophages. Journal of Immunology, 2001, 167, 30-35.	0.4	157
57	Soluble CD14 Mediates Efflux of Phospholipids from Cells. Journal of Immunology, 2001, 166, 826-831.	0.4	30
58	Peroxisome Proliferator-activated Receptor-Î ³ Ligands Inhibit Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1 Expression and Activity. Journal of Biological Chemistry, 2001, 276, 12629-12635.	1.6	186
59	27-Hydroxycholesterol Is an Endogenous Ligand for Liver X Receptor in Cholesterol-loaded Cells. Journal of Biological Chemistry, 2001, 276, 38378-38387.	1.6	465
60	Fibrinogen is a component of a novel lipoprotein particle: Factor H–related protein (FHRP)–associated lipoprotein particle (FALP). Blood, 2000, 95, 198-204.	0.6	23
61	Activation of Peroxisome Proliferator-Activated Receptor γ Does Not Inhibit IL-6 or TNF-α Responses of Macrophages to Lipopolysaccharide In Vitro or In Vivo. Journal of Immunology, 2000, 164, 1046-1054.	0.4	189
62	Deficiency in Inducible Nitric Oxide Synthase Results in Reduced Atherosclerosis in Apolipoprotein E-Deficient Mice. Journal of Immunology, 2000, 165, 3430-3435.	0.4	201
63	Infectious Agents Are Not Necessary for Murine Atherogenesis. Journal of Experimental Medicine, 2000, 191, 1437-1442.	4.2	173
64	Activation of PPARα or γ Reduces Secretion of Matrix Metalloproteinase 9 but Not Interleukin 8 from Human Monocytic THP-1 Cells. Biochemical and Biophysical Research Communications, 2000, 267, 345-349.	1.0	214
65	PPARα Agonists Reduce 11β-Hydroxysteroid Dehydrogenase Type 1 in the Liver. Biochemical and Biophysical Research Communications, 2000, 279, 330-336.	1.0	93
66	Fibrinogen is a component of a novel lipoprotein particle: Factor H–related protein (FHRP)–associated lipoprotein particle (FALP). Blood, 2000, 95, 198-204.	0.6	3
67	Toll, A New Piece in the Puzzle of Innate Immunity. Journal of Experimental Medicine, 1999, 189, 605-609.	4.2	226
68	Transport of Bacterial Lipopolysaccharide to the Golgi Apparatus. Journal of Experimental Medicine, 1999, 190, 523-534.	4.2	110
69	Enhancement of leukocyte response to lipopolysaccharide by secretory group IIA phospholipase A2. Journal of Leukocyte Biology, 1999, 65, 750-756.	1.5	9
70	Innate Immune Recognition of Bacterial Lipopolysaccharide: Dependence on Interactions with Membrane Lipids and Endocytic Movement. Immunity, 1998, 8, 771-777.	6.6	75
71	Targeted Deletion of the Lipopolysaccharide (LPS)-binding Protein Gene Leads to Profound Suppression of LPS Responses Ex Vivo, whereas In Vivo Responses Remain Intact. Journal of Experimental Medicine, 1997, 186, 2051-2056.	4.2	171
72	Mice Genetically Hyporesponsive to Lipopolysaccharide (LPS) Exhibit a Defect in Endocytic Uptake of LPS and Ceramide. Journal of Experimental Medicine, 1997, 185, 2095-2100.	4.2	62

#	Article	IF	CITATIONS
73	Tissue Factor Pathway Inhibitor Blocks Cellular Effects of Endotoxin by Binding to Endotoxin and Interfering With Transfer to CD14. Blood, 1997, 89, 4268-4274.	0.6	78
74	IB4, a monoclonal antibody against the CD18 leukocyte adhesion protein, reduces intracranial pressure following thromboembolic stroke in the rabbit. Neurological Research, 1996, 18, 171-175.	0.6	21
75	Catalytic Properties of Lipopolysaccharide (LPS) Binding Protein. Journal of Biological Chemistry, 1996, 271, 4100-4105.	1.6	182
76	Plasma Lipopolysaccharide-binding Protein Is Found Associated with a Particle Containing Apolipoprotein A-I, Phospholipid, and Factor H-related Proteins. Journal of Biological Chemistry, 1996, 271, 18054-18060.	1.6	93
77	Neutralization and Transfer of Lipopolysaccharide by Phospholipid Transfer Protein. Journal of Biological Chemistry, 1996, 271, 12172-12178.	1.6	155
78	Reversible Inactivation of Purified Leukocyte Integrin CR3 (CD11b/CD18, β _m β ₂) by Removal of Divalent Cations from a Cryptic Site. Cell Adhesion and Communication, 1995, 3, 399-406.	1.7	16
79	Does endotoxin stimulate cells by mimicking ceramide?. Trends in Immunology, 1995, 16, 297-302.	7.5	92
80	Soluble CD14 Truncated at Amino Acid 152 Binds Lipopolysaccharide (LPS) and Enables Cellular Response to LPS. Journal of Biological Chemistry, 1995, 270, 1382-1387.	1.6	76
81	Energetics of Leukocyte Integrin Activation. Journal of Biological Chemistry, 1995, 270, 14358-14365.	1.6	45
82	Identification of a Domain in Soluble CD14 Essential for Lipopolysaccharide (LPS) Signaling but Not LPS Binding. Journal of Biological Chemistry, 1995, 270, 17237-17242.	1.6	78
83	CD14: Physical Properties and Identification of an Exposed Site That Is Protected by Lipopolysaccharide. Journal of Biological Chemistry, 1995, 270, 5213-5218.	1.6	58
84	Identification of a Lipopolysaccharide Binding Domain in CD14 between Amino Acids 57 and 64. Journal of Biological Chemistry, 1995, 270, 5219-5224.	1.6	116
85	A fluorescence microassay for the quantitation of integrin-mediated adhesion of neutrophil. Journal of Immunological Methods, 1994, 172, 25-31.	0.6	41
86	Integrin Modulating Factor and the Regulation of Leukocyte Integrins. , 1994, , 25-35.		0
87	The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 1993, 23, 255-261.	1.6	202
88	Integrin modulating factor-1: A lipid that alters the function of leukocyte integrins. Cell, 1992, 68, 341-352.	13.5	168
89	Gramâ€negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction ¹ . FASEB Journal, 1991, 5, 2652-2660.	0.2	511
90	Role of complements C3 and C5 in the phagocytosis of liposomes by human neutrophils. Pharmaceutical Research, 1991, 08, 65-69.	1.7	56

#	Article	IF	CITATIONS
91	<i>Response</i> : CD14 and Immune Response to Lipopolysaccharide. Science, 1991, 252, 1321-1322.	6.0	8
92	Response : CD14 and Immune Response to Lipopolysaccharide. Science, 1991, 252, 1321-1322.	6.0	1
93	Macrophages form circular zones of very close apposition to lgG-Coated surfaces. Cytoskeleton, 1990, 15, 260-270.	4.4	47
94	Specificity and Regulation of CD18-Dependent Adhesions. , 1990, , 190-207.		8
95	Adhesion-promoting receptors on phagocytes. Journal of Cell Science, 1988, 1988, 99-120.	1.2	46
96	[7] Methods for the study of receptor-mediated phagocytosis. Methods in Enzymology, 1986, 132, 204-221.	0.4	35
97	Activation of Phagocytic Cells' C3 Receptors for Phagocytosis. Journal of Leukocyte Biology, 1985, 38, 327-339.	1.5	66
98	Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature, 1984, 309, 359-361.	13.7	141