Janice M Pluth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11597520/publications.pdf

Version: 2024-02-01

		687363	8	39539
18	513	13		18
papers	citations	h-index		g-index
18	18	18		709
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	XRCC4 and MRE11 Roles and Transcriptional Response to Repair of TALEN-Induced Double-Strand DNA Breaks. International Journal of Molecular Sciences, 2022, 23, 593.	4.1	1
2	Comparison of signaling profiles in the low dose range following low and high LET radiation. Life Sciences in Space Research, 2020, 25, 28-41.	2.3	4
3	Genetic variation and radiation quality impact cancer promoting cellular phenotypes in response to HZE exposure. Life Sciences in Space Research, 2019, 20, 101-112.	2.3	2
4	Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells. Aging, 2017, 9, 665-686.	3.1	2
5	Evaluating biomarkers to model cancer risk post cosmic ray exposure. Life Sciences in Space Research, 2016, 9, 19-47.	2.3	30
6	Defining the Biological Effectiveness of Components of High-LET Track Structure. Radiation Research, 2015, 184, 105.	1.5	29
7	Novel Smad proteins localize to IR-induced double-strand breaks: interplay between TGF \hat{I}^2 and ATM pathways. Nucleic Acids Research, 2013, 41, 933-942.	14.5	48
8	Heavy Ions Can Enhance $TGF\hat{l}^2$ Mediated Epithelial to Mesenchymal Transition. Journal of Radiation Research, 2012, 53, 51-57.	1.6	16
9	Increased Artemis levels confer radioresistance to both high and low LET radiation exposures. Radiation Oncology, 2012, 7, 96.	2.7	17
10	Protons Sensitize Epithelial Cells to Mesenchymal Transition. PLoS ONE, 2012, 7, e41249.	2.5	17
11	Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study. Journal of Molecular Modeling, 2012, 18, 2163-2174.	1.8	20
12	AT cells are not radiosensitive for simple chromosomal exchanges at low dose. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 716, 76-83.	1.0	12
13	Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics after Exposure to X Rays and High-Energy Iron Nuclei. Radiation Research, 2010, 174, 691-702.	1.5	14
14	Dose Response of \hat{I}^3 Rays and Iron Nuclei for Induction of Chromosomal Aberrations in Normal and Repair-Deficient Cell Lines. Radiation Research, 2009, 171, 752-763.	1.5	37
15	DNA double-strand break and chromosomal rejoining defects with misrejoining in Nijmegen breakage syndrome cells. DNA Repair, 2008, 7, 108-118.	2.8	17
16	Biochemical Kinetics Model of DSB Repair and Induction of \hat{I}^3 -H2AX Foci by Non-homologous End Joining. Radiation Research, 2008, 169, 214-222.	1.5	116
17	Specific ATM-Mediated Phosphorylation Dependent on Radiation Quality. Radiation Research, 2008, 170, 353-364.	1.5	36
18	Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair, 2005, 4, 556-570.	2.8	95