D Lozano-Castello

List of Publications by Citations

Source: https://exaly.com/author-pdf/11597243/d-lozano-castello-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32 4,129 23 32 g-index

32 4,390 8 5 L-index

#	Paper	IF	Citations
32	Preparation of activated carbons from Spanish anthracite. <i>Carbon</i> , 2001 , 39, 741-749	10.4	537
31	Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. <i>Carbon</i> , 2003 , 41, 1765-1775	10.4	382
30	Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. <i>Carbon</i> , 2007 , 45, 293-303	10.4	379
29	Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81, 1777-1803	7.1	330
28	Role of surface chemistry on electric double layer capacitance of carbon materials. <i>Carbon</i> , 2005 , 43, 2677-2684	10.4	329
27	Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. <i>Carbon</i> , 2004 , 42, 1233-1242	10.4	281
26	Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. <i>Carbon</i> , 2007 , 45, 2529-2536	10.4	254
25	Preparation of activated carbons from Spanish anthracite. <i>Carbon</i> , 2001 , 39, 751-759	10.4	232
24	Chemical and electrochemical characterization of porous carbon materials. <i>Carbon</i> , 2006 , 44, 2642-2651	10.4	190
23	Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. <i>Carbon</i> , 2002 , 40, 989-1002	10.4	178
22	Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. <i>Carbon</i> , 2013 , 62, 346-355	10.4	165
21	Activated carbon monoliths for methane storage: influence of binder. <i>Carbon</i> , 2002 , 40, 2817-2825	10.4	139
20	Powdered Activated Carbons and Activated Carbon Fibers for Methane Storage: A Comparative Study. <i>Energy & Description</i> 2002, 16, 1321-1328	4.1	111
19	Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. <i>Catalysis Science and Technology</i> , 2015 , 5, 364-371	5.5	86
18	Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre B ANI electrodes. <i>Electrochimica Acta</i> , 2013 , 89, 326-333	6.7	82
17	Fundamentals of methane adsorption in microporous carbons. <i>Microporous and Mesoporous Materials</i> , 2009 , 124, 110-116	5.3	70
16	Micropore Size Distributions of Activated Carbons and Carbon Molecular Sieves Assessed by High-Pressure Methane and Carbon Dioxide Adsorption Isotherms. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9372-9379	3.4	50

LIST OF PUBLICATIONS

15	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. <i>Carbon</i> , 2005 , 43, 1643-1651	10.4	42
14	Characterization of pore distribution in activated carbon fibers by microbeam small angle X-ray scattering. <i>Carbon</i> , 2002 , 40, 2727-2735	10.4	41
13	New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy. <i>Carbon</i> , 2014 , 69, 401-408	10.4	35
12	Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate. <i>Carbon</i> , 2010 , 48, 1451-1456	10.4	35
11	Kinetics of Double-Layer Formation: Influence of Porous Structure and Pore Size Distribution <i>Energy & Energy &</i>	4.1	30
10	Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering. <i>Carbon</i> , 2012 , 50, 1051-1056	10.4	23
9	Can highly activated carbons be prepared with a homogeneous micropore size distribution?. <i>Fuel Processing Technology</i> , 2002 , 77-78, 325-330	7.2	21
8	Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. <i>Carbon</i> , 2015 , 89, 63-73	10.4	20
7	In situ small angle neutron scattering study of CD4 adsorption under pressure in activated carbons. <i>Carbon</i> , 2001 , 39, 1343-1354	10.4	19
6	Monolithic Carbon Molecular Sieves from activated bituminous coal impregnated with a slurry of coal tar pitch. <i>Fuel Processing Technology</i> , 2012 , 95, 67-72	7.2	17
5	Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: Characterization and design of the carbon carriers. <i>Carbon</i> , 2006 , 44, 3053-3063	10.4	16
4	Characteristics of an activated carbon monolith for a helium adsorption compressor. <i>Carbon</i> , 2010 , 48, 123-131	10.4	14
3	Comparative characterization study of microporous carbons by HRTEM image analysis and gas adsorption. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15032-6	3.4	14
2	Relevance of porosity and surface chemistry of superactivated carbons in capacitors. <i>Tanso</i> , 2013 , 2013, 41-47	0.1	6
1	Application of Non-crystalline Diffraction with Microfocus to Carbon Fibres. <i>Lecture Notes in Physics</i> , 2009 , 199-216	0.8	1