Clement Gosselin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1159592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Static Model-Based Grasping Force Control of Parallel Grasping Robots With Partial Cartesian Force Measurement. IEEE/ASME Transactions on Mechatronics, 2022, 27, 999-1010.	5.8	6
2	Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities. Journal of Mechanisms and Robotics, 2022, 14, .	2.2	6
3	Determination of the Inverse Kinematics Branches of Solution Based on Joint Coordinates for Universal Robots-Like Serial Robot Architecture. Journal of Mechanisms and Robotics, 2022, 14, .	2.2	6
4	Kinematic Calibration of Cable-Driven Parallel Robots Considering the Pulley Kinematics. Mechanism and Machine Theory, 2022, 169, 104648.	4.5	20
5	Low-Impedance Displacement Sensors for Intuitive Physical Human–Robot Interaction: Motion Guidance, Design, and Prototyping. IEEE Transactions on Robotics, 2022, 38, 1518-1530.	10.3	5
6	Singularity analysis of a kinematically redundant (6+2)-DOF parallel mechanism for zero-torsion configurations. Mechanism and Machine Theory, 2022, 170, 104682.	4.5	7
7	Reorientation of Free-Falling Legged Robots. , 2022, 1, .		4
8	Synthesis and Prototyping of a 6-dof Parallel Robot for the Automatic Performance of Assembly Tasks. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2022, 26, 125-137.	0.9	2
9	How to reduce the impedance for pHRI: Admittance control or underactuation?. Mechatronics, 2022, 84, 102768.	3.3	4
10	Beyond-the-static-workspace point-to-point trajectory planning of a 6-DoF cable-suspended mechanism using oscillating SLERP. Mechanism and Machine Theory, 2022, 174, 104894.	4.5	4
11	Kinematic analysis of a new 2-DOF parallel wrist with a large singularity-free rotational workspace. Mechanism and Machine Theory, 2022, 175, 104942.	4.5	9
12	Singularity analysis of a kinematically redundant (6+2)-DOF parallel mechanism for general configurations. Mechanism and Machine Theory, 2022, 176, 105015.	4.5	3
13	A Bisection Algorithm for Time-Optimal Trajectory Planning Along Fully Specified Paths. IEEE Transactions on Robotics, 2021, 37, 131-145.	10.3	30
14	A novel family of umbrella-shaped deployable mechanisms constructed by multi-layer and multi-loop spatial linkage units. Mechanism and Machine Theory, 2021, 161, 104169.	4.5	14
15	Mechanisms for Robotic Grasping and Manipulation. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 573-593.	11.8	11
16	Mechanical Design of a Low-Impedance 6-Degree-of-Freedom Displacement Sensor for Intuitive Physical Human–Robot Interaction. Journal of Mechanisms and Robotics, 2021, 13, .	2.2	7
17	Modeling and Development of Passively Adaptive Assistive Tools for the Assembly of Press-Fit Components. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	2.9	0
18	Exploiting Redundancies for Workspace Enlargement and Joint Trajectory Optimization of a Kinematically Redundant Hybrid Parallel Robot. Journal of Mechanisms and Robotics, 2021, 13, .	2.2	7

#	Article	IF	CITATIONS
19	Design and Experimental Validation of Reorientation Manoeuvres for a Free Falling Robot Inspired From the Cat Righting Reflex. IEEE Transactions on Robotics, 2021, 37, 482-493.	10.3	7
20	Analysis and synthesis of assistive tools for insertion tasks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 2066-2080.	2.4	1
21	Motion control algorithms based on the dynamic modelling of kinematically redundant hybrid parallel robots. Mechatronics, 2021, 76, 102555.	3.3	6
22	On the Optimal Design of Underactuated Fingers Using Rolling Contact Joints. IEEE Robotics and Automation Letters, 2021, 6, 4656-4663.	5.1	11
23	A Backdrivable Kinematically Redundant (6+3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction. IEEE Transactions on Robotics, 2021, 37, 1222-1238.	10.3	39
24	Rotational Low-Impedance Physical Human–Robot Interaction Using Underactuated Redundancy. Journal of Mechanisms and Robotics, 2021, 13, .	2.2	9
25	Multiple Cylinder Extraction from Organized Point Clouds. Sensors, 2021, 21, 7630.	3.8	0
26	Dynamic decoupling analysis and experiment based on a class of modified Gough-Stewart parallel manipulators with line orthogonality. Mechanism and Machine Theory, 2020, 143, 103636.	4.5	13
27	Dynamic transition trajectory planning of three-DOF cable-suspended parallel robots via linear time-varying MPC. Mechanism and Machine Theory, 2020, 146, 103715.	4.5	20
28	Trajectory Optimization for a Six-DOF Cable-Suspended Parallel Robot with Dynamic Motions Beyond the Static Workspace. , 2020, , .		2
29	Kinematic and dynamic analysis of a novel parallel kinematic Schönflies motion generator. Mechanism and Machine Theory, 2020, 147, 103629.	4.5	12
30	Dynamic Point-To-Point Trajectory Planning for Three Degrees-of-Freedom Cable-Suspended Parallel Robots Using Rapidly Exploring Random Tree Search. Journal of Mechanisms and Robotics, 2020, 12, .	2.2	11
31	Parallel Robots: Architecture, Modeling, and Design. , 2020, , 1-6.		0
32	Transferability in an 8-DoF Parallel Robot with a Configurable Platform. , 2020, , .		1
33	Design, Analysis and Preliminary Validation of a 3-DOF Rotational Inertia Generator *. , 2020, , .		0
34	A frequency-dependent impedance controller for an active-macro/passive-mini robotic system. , 2020, , .		0
35	Stable and repeatable grasping of flat objects on hard surfaces using passive and epicyclic mechanisms. Robotics and Computer-Integrated Manufacturing, 2019, 55, 1-10.	9.9	30
36	Kinematically Redundant Hybrid Robots With Simple Singularity Conditions and Analytical Inverse Kinematic Solutions. IEEE Robotics and Automation Letters, 2019, 4, 3828-3835.	5.1	16

#	Article	IF	CITATIONS
37	Kinematically Redundant (6+3)-dof Hybrid Parallel Robot with Large orientational Workspace and Remotely Operated Gripper. , 2019, , .		17
38	Kinematic Analysis of a 4-DOF Parallel Mechanism with Large Translational and Orientational Workspace. , 2019, , .		4
39	A parallel low-impedance sensing approach for highly responsive physical human-robot interaction. , 2019, , .		4
40	Model-Based Grasping of Unknown Objects from a Random Pile. Robotics, 2019, 8, 79.	3.5	8
41	Schönflies Motion PARAllel Robot (SPARA): A Kinematically Redundant Parallel Robot With Unlimited Rotation Capabilities. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2273-2281.	5.8	18
42	Haptic Interface for Handshake Emulation. IEEE Robotics and Automation Letters, 2019, 4, 4124-4130.	5.1	6
43	Dynamic Trajectory Planning and Geometric Analysis of a Two-Degree-of-Freedom Translational Cable-Suspended Planar Parallel Robot Using a Parallelogram Cable Loop. Journal of Mechanisms and Robotics, 2019, 11, .	2.2	7
44	Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 760-771.	4.9	440
45	Exploiting the Kinematic Redundancy of a (6 + 3) Degrees-of-Freedom Parallel Mechanism. Journal of Mechanisms and Robotics, 2019, 11, .	2.2	14
46	Intuitive Adaptive Orientation Control for Enhanced Human–Robot Interaction. IEEE Transactions on Robotics, 2019, 35, 509-520.	10.3	20
47	Dynamically feasible motions of a class of purely-translational cable-suspended parallel robots. Mechanism and Machine Theory, 2019, 132, 193-206.	4.5	36
48	Experimental Validation of a Three-Degree-of-Freedom Cable-Suspended Parallel Robot for Spatial Translation With Constant Orientation. Journal of Mechanisms and Robotics, 2019, 11, .	2.2	8
49	Underactuation with Link Mechanisms. , 2019, , 523-533.		0
50	Modelling, trajectory optimisation and prototyping of sequentially actuated manipulators. Robotica, 2019, 37, 281-299.	1.9	1
51	Effect of Actuation Errors on a Purely-Translational Spatial Cable-Driven Parallel Robot. , 2019, , .		11
52	Dynamic Point-to-Point Trajectory Planning Beyond the Static Workspace for Six-DOF Cable-Suspended Parallel Robots. IEEE Transactions on Robotics, 2018, 34, 781-793.	10.3	24
53	A Multimodal Adaptive Wireless Control Interface for People With Upper-Body Disabilities. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 564-575.	4.0	24
54	Singularities of a planar 3-RPR parallel manipulator with joint clearance. Robotica, 2018, 36, 1098-1109.	1.9	4

#	Article	IF	CITATIONS
55	Kinematic Analysis of a Novel Kinematically Redundant Spherical Parallel Manipulator. Journal of Mechanisms and Robotics, 2018, 10, .	2.2	11
56	A deployable mechanism concept for the collection of small-to-medium-size space debris. Advances in Space Research, 2018, 61, 1286-1297.	2.6	6
57	Redundancy in Parallel Mechanisms: A Review. Applied Mechanics Reviews, 2018, 70, .	10.1	72
58	Intuitive Physical Human-Robot Interaction: Using a Passive Parallel Mechanism. IEEE Robotics and Automation Magazine, 2018, 25, 28-38.	2.0	23
59	A model-based scooping grasp for the autonomous picking of unknown objects with a two-fingered gripper. Robotics and Autonomous Systems, 2018, 106, 14-25.	5.1	30
60	Periodic Trajectory Planning Beyond the Static Workspace for 6-DOF Cable-Suspended Parallel Robots. IEEE Transactions on Robotics, 2018, 34, 1128-1140.	10.3	28
61	Dynamically Feasible Periodic Trajectories for Generic Spatial Three-Degree-of-Freedom Cable-Suspended Parallel Robots1. Journal of Mechanisms and Robotics, 2018, 10, .	2.2	16
62	Dynamically-Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots. Mechanisms and Machine Science, 2018, , 219-230.	0.5	6
63	Dynamic Transition Trajectory Planning of Three-DOF Cable-Suspended Parallel Robots. Mechanisms and Machine Science, 2018, , 231-242.	0.5	1
64	On the Design of a Novel Cable-Driven Parallel Robot Capable of Large Rotation About One Axis. Mechanisms and Machine Science, 2018, , 390-401.	0.5	7
65	Kinematically redundant planar parallel mechanisms: Kinematics, workspace and trajectory planning. Mechanism and Machine Theory, 2018, 119, 91-105.	4.5	37
66	Extending the capabilities of robotic manipulators using trajectory optimization. Mechanism and Machine Theory, 2018, 121, 502-514.	4.5	20
67	Exploiting the Kinematic Redundancy of a 6+3 Dofs Parallel Mechanism. , 2018, , .		0
68	Kinematic and Workspace Modelling of a 6-PUS Parallel Mechanism. , 2018, , .		0
69	Dynamic Trajectory Planning and Geometric Design of a Two-DOF Translational Cable-Suspended Planar Parallel Robot Using a Parallelogram Cable Loop. , 2018, , .		2
70	Picking, grasping, or scooping small objects lying on flat surfaces: A design approach. International Journal of Robotics Research, 2018, 37, 1484-1499.	8.5	40
71	Variable Admittance for pHRI: From Intuitive Unilateral Interaction to Optimal Bilateral Force Amplification. Robotics and Computer-Integrated Manufacturing, 2018, 52, 1-8.	9.9	28
72	Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Mechanism Using the Hypocycloid Curve. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1964-1972.	5.8	25

#	Article	IF	CITATIONS
73	On the Design of a Three-DOF Cable-Suspended Parallel Robot Based on a Parallelogram Arrangement of the Cables. Mechanisms and Machine Science, 2018, , 319-330.	0.5	12
74	Development and Experimental Validation of a Haptic Compass Based on Asymmetric Torque Stimuli. IEEE Transactions on Haptics, 2017, 10, 29-39.	2.7	22
75	uMan: A Low-Impedance Manipulator for Human–Robot Cooperation Based on Underactuated Redundancy. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1401-1411.	5.8	41
76	A Haptic Bilateral System for the Remote Human–Human Handshake. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2017, 139, .	1.6	10
77	Passively Driven Redundant Spherical Joint With Very Large Range of Motion. Journal of Mechanisms and Robotics, 2017, 9, .	2.2	11
78	Design and Static Analysis of Elastic Force and Torque Limiting Devices for Safe Physical Human–Robot Interaction. Journal of Mechanisms and Robotics, 2017, 9, .	2.2	4
79	Singularity analysis of a class of kinematically redundant parallel Schönflies motion generators. Mechanism and Machine Theory, 2017, 112, 172-191.	4.5	18
80	An articulated assistive robot for intuitive hands-on-payload manipulation. Robotics and Computer-Integrated Manufacturing, 2017, 48, 182-187.	9.9	5
81	Trajectory planning for the static to dynamic transition of point-mass cable-suspended parallel mechanisms. Mechanism and Machine Theory, 2017, 113, 158-178.	4.5	22
82	A Systematic Approach for the Jacobian Analysis of Parallel Manipulators with Two End-Effectors. Mechanism and Machine Theory, 2017, 109, 171-194.	4.5	21
83	Wireless sEMG-Based Body–Machine Interface for Assistive Technology Devices. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 967-977.	6.3	27
84	Gravity Compensation of Robotic Manipulators Using Cylindrical Halbach Arrays. IEEE/ASME Transactions on Mechatronics, 2017, 22, 457-464.	5.8	31
85	Trajectory planning and control of a belt-driven locomotion interface for flat terrain walking and stair climbing. , 2017, , .		1
86	Optimization of the Singularity Locus of a Novel Kinematically Redundant Spherical Parallel Manipulator. , 2017, , .		0
87	An anticipative kinematic limitation avoidance algorithm for collaborative robots: Three-dimensional case. , 2017, , .		7
88	Design, control and experimental validation of a haptic robotic hand performing human-robot handshake with human-like agility. , 2017, , .		14
89	Bidirectional Haptic Communication: Application to the Teaching and Improvement of Handwriting Capabilities. Machines, 2016, 4, 6.	2.2	8
90	PARAMETRIC TRAJECTORY OPTIMISATION FOR INCREASED PAYLOAD. Transactions of the Canadian Society for Mechanical Engineering, 2016, 40, 125-137.	0.8	4

#	Article	IF	CITATIONS
91	Consistent modeling resolves asymmetry in stiffness matrices. Mechanism and Machine Theory, 2016, 105, 80-90.	4.5	4
92	Trajectory Generation for Three-Degree-of-Freedom Cable-Suspended Parallel Robots Based on Analytical Integration of the Dynamic Equations. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	15
93	A convolutional neural network for robotic arm guidance using sEMG based frequency-features. , 2016, , .		52
94	An anticipative kinematic limitation avoidance algorithm for collaborative robots: Two-dimensional case. , 2016, , .		5
95	A tension distribution algorithm for cable-driven parallel robots operating beyond their wrench-feasible workspace. , 2016, , .		10
96	Workspace and Sensitivity Analysis of a Novel Nonredundant Parallel SCARA Robot Featuring Infinite Tool Rotation. IEEE Robotics and Automation Letters, 2016, 1, 776-783.	5.1	37
97	An introduction to utilising the redundancy of a kinematically redundant parallel manipulator to operate a gripper. Mechanism and Machine Theory, 2016, 101, 50-59.	4.5	33
98	A time-domain vibration observer and controller for physical human-robot interaction. Mechatronics, 2016, 36, 45-53.	3.3	35
99	Stiffness analysis, motion design and reconfiguration study of parallel mechanisms and manipulators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 339-340.	2.1	5
100	Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Parallel Robot. IEEE Transactions on Robotics, 2016, 32, 1550-1557.	10.3	45
101	Parallel Mechanisms. Springer Handbooks, 2016, , 443-462.	0.6	10
102	Synthesis, optimization and experimental validation of reactionless two-DOF parallel mechanisms using counter-mechanisms. Meccanica, 2016, 51, 3211-3225.	2.0	11
103	On the design of mechanically safe robots based on spatial isotropic force modules and torque limiters. Mechanism and Machine Theory, 2016, 105, 199-212.	4.5	3
104	Modeling of physical human–robot interaction. International Journal of Advanced Robotic Systems, 2016, 13, 172988141665816.	2.1	25
105	Development and experimental validation of a reorientation algorithm for a free-floating serial manipulator. , 2016, , .		5
106	Design, Control, and Experimental Validation of a Handshaking Reactive Robotic Interface. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	9
107	Force Capabilities of Two-Degree-of-Freedom Serial Robots Equipped With Passive Isotropic Force Limiters. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	8
108	Experimental Validation of Jacobian-Based Stiffness Analysis Method for Parallel Manipulators With Nonredundant Legs. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	10

#	Article	IF	CITATIONS
109	Optimal Design of Safe Planar Manipulators Using Passive Torque Limiters. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	6
110	A Cable-Suspended Intelligent Crane Assist Device for the Intuitive Manipulation of Large Payloads. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2073-2084.	5.8	36
111	Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace. IEEE Transactions on Robotics, 2016, 32, 286-300.	10.3	96
112	Low-Impedance Physical Human-Robot Interaction Using an Active–Passive Dynamics Decoupling. IEEE Robotics and Automation Letters, 2016, 1, 938-945.	5.1	21
113	Synthesis and Design of a One Degree-of-Freedom Planar Deployable Mechanism With a Large Expansion Ratio. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	23
114	Design of a locomotion interface for gait simulation based on belt-driven parallel mechanisms. , 2015, ,		2
115	Large-scale 3D printing with a cable-suspended robot. Additive Manufacturing, 2015, 7, 27-44.	3.0	154
116	Performance optimization of a multi-DOF bilateral robot force amplification using complementary stability. , 2015, , .		4
117	A Comparison of the Effectiveness of Design Approaches for Human-Friendly Robots. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	2.9	7
118	Time-Optimal Trajectory Planning of Cable-Driven Parallel Mechanisms for Fully Specified Paths With G1-Discontinuities. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2015, 137, .	1.6	21
119	Weak support material techniques for alternative additive manufacturing materials. Additive Manufacturing, 2015, 8, 95-104.	3.0	20
120	Dynamic trajectory planning study of planar two-dof redundantly actuated cable-suspended parallel robots. Mechatronics, 2015, 30, 187-197.	3.3	24
121	Braking device using counter electromotive force for the ergonomic assisted manipulation of large payloads. Robotics and Computer-Integrated Manufacturing, 2015, 35, 137-143.	9.9	0
122	Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability. IEEE Transactions on Robotics, 2015, 31, 457-467.	10.3	94
123	Dynamic modelling and control of a cubic flying blimp using external motion capture. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2015, 229, 970-982.	1.0	7
124	Maximal singularity-free orientation workspace over a position region of Gough–Stewart platform. Advanced Robotics, 2015, 29, 1427-1436.	1.8	9
125	Experimental Determination of the Accuracy of a Three-Dof Cable-Suspended Parallel Robot Performing Dynamic Trajectories. Mechanisms and Machine Science, 2015, , 101-112.	0.5	10
126	An admittance control scheme for haptic interfaces based on cable-driven parallel mechanisms. , 2014,		26

#	Article	IF	CITATIONS
127	Dynamically Feasible Trajectories for Three-DOF Planar Cable-Suspended Parallel Robots. , 2014, , .		13
128	Two-Degree-of-Freedom Decoupled Nonredundant Cable-Loop-Driven Parallel Mechanism. Journal of Mechanisms and Robotics, 2014, 6, .	2.2	2
129	Dynamic trajectory planning of planar two-dof redundantly actuated cable-suspended parallel robots. , 2014, , .		2
130	Design and experimental validation of planar programmable inertia generators. International Journal of Robotics Research, 2014, 33, 489-506.	8.5	6
131	A dual-motor robot joint mechanism with epicyclic gear train. , 2014, , .		6
132	Robotic force amplification with free space motion capability. , 2014, , .		7
133	Dynamic Point-to-Point Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot. IEEE Transactions on Robotics, 2014, 30, 728-736.	10.3	67
134	Approximate static balancing of a planar parallel cable-driven mechanism based on four-bar linkages and springs. Mechanism and Machine Theory, 2014, 79, 64-79.	4.5	18
135	Cable-driven parallel mechanisms: state of the art and perspectives. Mechanical Engineering Reviews, 2014, 1, DSM0004-DSM0004.	4.7	111
136	Construction, Mobility Analysis and Synthesis of Polyhedra With Articulated Faces. Journal of Mechanisms and Robotics, 2014, 6, .	2.2	12
137	ANALYSE CINÉMATIQUE ET DYNAMIQUE D'UN ROBOT PATINEUR. Transactions of the Canadian Society for Mechanical Engineering, 2014, 38, 185-197.	0.8	3
138	Global Planning of Dynamically Feasible Trajectories for Three-DOF Spatial Cable-Suspended Parallel Robots. Mechanisms and Machine Science, 2013, , 3-22.	0.5	53
139	A Friendly Beast of Burden: A Human-Assistive Robot for Handling Large Payloads. IEEE Robotics and Automation Magazine, 2013, 20, 139-147.	2.0	50
140	On the Force Capabilities of Two-Degree-of-Freedom Planar Parallel Mechanisms Equipped With Torque Limiters. , 2013, , .		0
141	A Vector Expression of the Constant-Orientation Singularity Locus of the Gough–Stewart Platform. Journal of Mechanisms and Robotics, 2013, 5, .	2.2	3
142	On the Design of a Mechanically Programmable Underactuated Anthropomorphic Prosthetic Gripper. Journal of Mechanical Design, Transactions of the ASME, 2013, 135, .	2.9	80
143	Type Synthesis of Kinematically Redundant 3T1R Parallel Manipulators. , 2013, , .		1
144	Computed-Torque Control of a Four-Degree-of-Freedom Admittance Controlled Intelligent Assist Device. Springer Tracts in Advanced Robotics, 2013, , 635-649.	0.4	10

#	Article	IF	CITATIONS
145	Orientation-singularity analysis and orientationability evaluation of a special class of the Stewart–Gough parallel manipulators. Robotica, 2013, 31, 1361-1372.	1.9	3
146	A bidirectional haptic device for the training and assessment of handwriting capabilities. , 2013, , .		10
147	Orientationability analyses of a special class of the Stewart–Gough parallel manipulators using the unit quaternion representation. Advanced Robotics, 2013, 27, 147-158.	1.8	5
148	On the design of a statically balanced serial robot using remote counterweights. , 2013, , .		31
149	Time-Optimal Trajectory Planning of Cable-Driven Parallel Mechanisms for Fully-Specified Paths With G1 Discontinuities. , 2013, , .		4
150	Dynamic Balancing of Two-DOF Parallel Mechanisms Using a Counter-Mechanism. , 2013, , .		3
151	On the Design of a Portable Force Illusion Device for Navigation Aids. , 2013, , .		1
152	Kinematics and Workspace Analyses of 3/3-RRRS Parallel Manipulator. Applied Mechanics and Materials, 2012, 155-156, 1090-1095.	0.2	3
153	Conceptual Design and Static Analysis of Novel Planar Spring-Loaded Cable-Loop-Driven Parallel Mechanisms. Journal of Mechanisms and Robotics, 2012, 4, .	2.2	13
154	Complete Moment Balancing of Contra Planar 5R Linkages. , 2012, , .		0
155	On the Design of Mechanically Programmable Underactuated Anthropomorphic Robotic and Prosthetic Grippers. , 2012, , .		2
156	Trajectory Planning of Cable-Suspended Parallel Robots Using Interval Positive-Definite Polynomials. , 2012, , .		0
157	Performance Indices for Collaborative Serial Robots With Optimally Adjusted Series Clutch Actuators. Journal of Mechanisms and Robotics, 2012, 4, .	2.2	10
158	A Frame-Independent Vector Expression of the Singularity Locus of the Gough-Stewart Platform. , 2012, , .		0
159	Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures. Journal of Mechanisms and Robotics, 2012, 4, .	2.2	53
160	Two-Degree-of-Freedom Decoupled Non-Redundant Cable-Loop-Driven Parallel Mechanism. , 2012, , .		0
161	Stable and Intuitive Control of an Intelligent Assist Device. IEEE Transactions on Haptics, 2012, 5, 148-159.	2.7	51
162	Point-to-point motion planning of a parallel 3-dof underactuated cable-suspended robot. , 2012, , .		40

#	Article	IF	CITATIONS
163	Dynamic trajectory planning of a two-DOF cable-suspended parallel robot. , 2012, , .		47
164	Variable admittance control of a four-degree-of-freedom intelligent assist device. , 2012, , .		150
165	Singularity analysis of 3T2R parallel mechanisms using Grassmann–Cayley algebra and Grassmann geometry. Mechanism and Machine Theory, 2012, 52, 326-340.	4.5	46
166	On the development of a walking rehabilitation device with a large workspace. , 2011, 2011, 5975360.		1
167	Series Clutch Actuators for safe physical human-robot interaction. , 2011, , .		37
168	Forward Displacement Analysis of a Linearly Actuated Quadratic Spherical Parallel Manipulator. Journal of Mechanisms and Robotics, 2011, 3, .	2.2	5
169	Stable Precision Grasps by Underactuated Grippers. , 2011, 27, 1056-1066.		49
170	SINGULARITY ANALYSIS OF THE 4 RUU PARALLEL MANIPULATOR USING GRASSMANN-CAYLEY ALGEBRA. Transactions of the Canadian Society for Mechanical Engineering, 2011, 35, 515-528.	0.8	6
171	GEOMETRIC ANALYSIS OF THE KINEMATIC SENSITIVITY OF PLANAR PARALLEL MECHANISMS. Transactions of the Canadian Society for Mechanical Engineering, 2011, 35, 477-490.	0.8	17
172	On the determination of the force distribution inÂoverconstrained cable-driven parallel mechanisms. Meccanica, 2011, 46, 3-15.	2.0	104
173	Kinematic analysis of 5-RPUR (3T2R) parallel mechanisms. Meccanica, 2011, 46, 131-146.	2.0	32
174	Forward displacement analysis of a quadratic 4-DOF 3T1R parallel manipulator. Meccanica, 2011, 46, 147-154.	2.0	19
175	Kinematostatic modeling of compliant parallel mechanisms. Meccanica, 2011, 46, 155-169.	2.0	18
176	Fundamental issues and new trends in parallel mechanisms and manipulators. Meccanica, 2011, 46, 1-1.	2.0	2
177	Singularity analysis of 5-RPUR parallel mechanisms (3T2R). International Journal of Advanced Manufacturing Technology, 2011, 57, 1107-1121.	3.0	20
178	Forward kinematic problem of 5-RPUR parallel mechanisms (3T2R) with identical limb structures. Mechanism and Machine Theory, 2011, 46, 945-959.	4.5	46
179	Kinematic design of a planar and spherical mechanism for the abduction of the fingers of an anthropomorphic robotic Hand. , 2011, , .		4
180	[VOILES SAILS]: A modular architecture for a fast parallel development in an international multidisciplinary project. , 2011, , .		4

#	Article	IF	CITATIONS
181	Determination of Singularity-Free Zones in the Workspace of Planar Parallel Mechanisms with Revolute Actuators. Applied Mechanics and Materials, 2011, 121-126, 1992-1996.	0.2	2
182	Comments on "Design and analysis of a totally decoupled 3-DOF spherical parallel manipulator―by D. Zhang and F. Zhang (Robotica, Available on CJO 19 Nov, 2010, doi:10.1017/S0263574710000652). Robotica, 2011, 29, 1101-1103.	1.9	0
183	Optimal Synthesis of a Planar Reactionless Three-Degree-of-Freedom Parallel Mechanism. Journal of Mechanisms and Robotics, 2011, 3, .	2.2	4
184	Unified Robot Control Scheme for Cooperative Motion, Autonomous Motion and Contact Reaction. Journal of Robotics and Mechatronics, 2011, 23, 557-566.	1.0	4
185	Dimensional Synthesis of Parallel Manipulators Based on Direction-Dependent Jacobian Indices. Lecture Notes in Computer Science, 2011, , 152-161.	1.3	0
186	A First Semimanual Device for Clinical Intramuscular Repetitive Cell Injections. Cell Transplantation, 2010, 19, 67-78.	2.5	23
187	Reactionless Two-Degree-of-Freedom Planar Parallel Mechanism With Variable Payload. Journal of Mechanisms and Robotics, 2010, 2, .	2.2	9
188	3-DOF Cartesian Force Limiting Device Based on the Delta architecture for safe physical human-robot interaction. , 2010, , .		10
189	Forward kinematic problem and constant orientation workspace of 5-RP̲RRR (3T2R) parallel mechanisms. , 2010, , .		0
190	Characterization of the electrical resistance of carbon-black-filled silicone: Application to a flexible and stretchable robot skin. , 2010, , .		41
191	Point-to-point motion control of a pendulum-like 3-dof underactuated cable-driven robot. , 2010, , .		29
192	Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices. IEEE Transactions on Robotics, 2010, 26, 166-173.	10.3	132
193	On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches. Journal of Mechanisms and Robotics, 2010, 2, .	2.2	125
194	Underactuated versatile gripper for the cleaning of nuclear sites. , 2010, , .		9
195	Human Safety Algorithms for a Parallel Cable-Driven Haptic Interface. Advances in Intelligent and Soft Computing, 2010, , 187-200.	0.2	8
196	Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies. Advances in Intelligent and Soft Computing, 2010, , 311-323.	0.2	6
197	Forward Kinematic Problem of 5-PRUR Parallel Mechanisms Using Study Parameters. , 2010, , 211-221.		7
198	A Gravity-Powered Mechanism for Extending the Workspace of a Cable-Driven Parallel Mechanism: Application to the Appearance Modelling of Objects. International Journal of Automation Technology, 2010, 4, 372-379.	1.0	25

#	Article	IF	CITATIONS
199	A first semimanual device for clinical intramuscular repetitive cell injections. Cell Transplantation, 2010, 19, 67-78.	2.5	11
200	A PLANAR CLOSED-LOOP CABLE-DRIVEN PARALLEL MECHANISM. Transactions of the Canadian Society for Mechanical Engineering, 2009, 33, 587-596.	0.8	5
201	DETERMINATION OF THE WORKSPACE OF A 3- <u>P</u> RPR PARALLEL MECHANISM FOR HUMAN-ROBOT COLLABORATION. Transactions of the Canadian Society for Mechanical Engineering, 2009, 33, 609-618.	0.8	2
202	Safe, Stable and Intuitive Control for Physical Human-Robot Interaction. , 2009, , .		73
203	Producing rigid contacts in cable-driven haptic interfaces using impact generating reels. , 2009, , .		5
204	A Quasi-Static Model for Planar Compliant Parallel Mechanisms. Journal of Mechanisms and Robotics, 2009, 1, .	2.2	14
205	Extremum Seeking Tuning for Reel Tension Control in Haptic Application. , 2009, , .		Ο
206	Kinematic and static analysis of a 3-PUPS spatial tensegrity mechanism. Mechanism and Machine Theory, 2009, 44, 162-179.	4.5	30
207	Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform. Mechanism and Machine Theory, 2009, 44, 1281-1293.	4.5	86
208	Determination of the complete set of shaking force and shaking moment balanced planar four-bar linkages. Mechanism and Machine Theory, 2009, 44, 1338-1347.	4.5	18
209	Dynamic balancing of planar mechanisms using toric geometry. Journal of Symbolic Computation, 2009, 44, 1346-1358.	0.8	16
210	Interference estimated time of arrival on a 6-DOF cable-driven haptic foot platform. , 2009, , .		2
211	A flexible robot skin for safe physical human robot interaction. , 2009, , .		64
212	On the Modeling of Leg Constraints in the Dynamic Analysis of Gough/Stewart-Type Platforms. Journal of Computational and Nonlinear Dynamics, 2009, 4, .	1.2	10
213	Kinematic design of an ejection-free underactuated anthropomorphic finger. , 2009, , .		12
214	2 DOF cartesian force limiting device for safe physical human-robot interaction. , 2009, , .		9
215	Determination and Management of Cable Interferences Between Two 6-DOF Foot Platforms in a Cable-Driven Locomotion Interface. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39, 528-544.	2.9	52
216	Discretely Deformable Surface Based on Mechanical Interpolation: Application to the Design of a Dynamically Reconfigurable Theater Stage. Journal of Mechanisms and Robotics, 2009, 1, .	2.2	2

#	Article	IF	CITATIONS
217	A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation. Journal of Mechanisms and Robotics, 2009, 1, .	2.2	49
218	ALGORITHME GÉNÉTIQUE MULTICRITÉRIEL POUR L'OPTIMISATION DE L'ARCHITECTURE DES MÂ ENTRAÃŽNÉS PAR CÃ,BLES - APPLICATION À UN SIMULATEUR DE VOL. Transactions of the Canadian Society for Mechanical Engineering, 2009, 33, 633-644.	ó‰CANISI 0.8	MES 1
219	On the Singularity Surface of Planar 3-RPR Parallel Mechanisms. Mechanics Based Design of Structures and Machines, 2008, 36, 411-425.	4.7	18
220	Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms. , 2008, , 27-48.		31
221	Underactuated Robotic Hands. Springer Tracts in Advanced Robotics, 2008, , .	0.4	302
222	Kinematic and Static Analysis of a Three-degree-of-freedom Spatial Modular Tensegrity Mechanism. International Journal of Robotics Research, 2008, 27, 951-966.	8.5	13
223	An anthropomorphic underactuated robotic hand with 15 dofs and a single actuator. , 2008, , .		129
224	Computationally Efficient Predictive Robot Control. IEEE/ASME Transactions on Mechatronics, 2007, 12, 570-578.	5.8	59
225	Determination of Singularity-Free Zones in the Workspace of Planar 3-P̱RR Parallel Mechanisms. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 649-652.	2.9	19
226	Parametric stiffness analysis of the Orthoglide. Mechanism and Machine Theory, 2007, 42, 296-311.	4.5	122
227	Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough–Stewart platform. Mechanism and Machine Theory, 2007, 42, 497-511.	4.5	93
228	Grasping vs. Manipulating. , 2007, , 7-31.		7
229	Kinetostatic Analysis of Robotic Fingers. Springer Tracts in Advanced Robotics, 2007, , 33-60.	0.4	2
230	Optimal Design of Underactuated Fingers. , 2007, , 117-138.		2
231	Underactuation between the Fingers. Springer Tracts in Advanced Robotics, 2007, , 139-169.	0.4	4
232	Design and Control of the Laval Underactuated Hands. , 2007, , 171-207.		10
233	Grasp Stability of Underactuated Fingers. Springer Tracts in Advanced Robotics, 2007, , 61-115.	0.4	2

#	Article	IF	CITATIONS
235	The Maximal Singularity-Free Workspace of Planar 3-RPR Parallel Mechanisms. , 2006, , .		10
236	A Lunar Liquid Mirror Telescope (LLMT) for deep-field infrared observations near the lunar pole. , 2006, 6265, 571.		4
237	Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism. Mechanism and Machine Theory, 2006, 41, 1072-1089.	4.5	88
238	Determination of maximal singularity-free zones in the workspace of planar three-degree-of-freedom parallel mechanisms. Mechanism and Machine Theory, 2006, 41, 1157-1167.	4.5	69
239	Type synthesis of 4-DOF SP-equivalent parallel manipulators: A virtual chain approach. Mechanism and Machine Theory, 2006, 41, 1306-1319.	4.5	89
240	The Agile Stereo Pair for active vision. Machine Vision and Applications, 2006, 17, 32-50.	2.7	37
241	Grasp-state plane analysis of two-phalanx underactuated fingers. Mechanism and Machine Theory, 2006, 41, 807-822.	4.5	47
242	Force Analysis of Connected Differential Mechanisms: Application to Grasping. International Journal of Robotics Research, 2006, 25, 1033-1046.	8.5	72
243	Convex cones in screw spaces. Mechanism and Machine Theory, 2005, 40, 710-727.	4.5	14
244	Type synthesis of 5-DOF parallel manipulators based on screw theory. Journal of Field Robotics, 2005, 22, 535-547.	0.7	69
245	Comment on "R-CUBE, a decoupled parallel manipulator only with revolute joints―by Li et al., [Mech. Mach. Theory 40 (4) (2004) 467–473]. Mechanism and Machine Theory, 2005, 40, 1207-1208.	4.5	Ο
246	HEXAPODE : UN ROBOT MARCHEUR. Transactions of the Canadian Society for Mechanical Engineering, 2005, 29, 553-568.	0.8	1
247	The design of structural acoustic sensors for active control of sound radiation into enclosures. Smart Materials and Structures, 2004, 13, 371-383.	3.5	4
248	Optimal design of PZT actuators in active structural acoustic control of a cylindrical shell with a floor partition. Journal of Sound and Vibration, 2004, 269, 569-588.	3.9	25
249	Kinetostatic Analysis of Underactuated Fingers. IEEE Transactions on Automation Science and Engineering, 2004, 20, 211-221.	2.3	200
250	Synthesis and Design of Reactionless Three-Degree-of-Freedom Parallel Mechanisms. IEEE Transactions on Automation Science and Engineering, 2004, 20, 191-199.	2.3	64
251	Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory. IEEE Transactions on Automation Science and Engineering, 2004, 20, 181-190.	2.3	212
252	Analyse et conception d'un manipulateur parallÃ ^{.:} le spatial à cinq degrés de liberté. Mechanism and Machine Theory, 2003, 38, 535-548.	4.5	4

#	Article	IF	CITATIONS
253	Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism. IEEE Transactions on Automation Science and Engineering, 2003, 19, 954-966.	2.3	96
254	Parallel kinematic machine design with kinetostatic model. Robotica, 2002, 20, 429-438.	1.9	21
255	Singularity Loci of a Special Class of Spherical Three-degree-of-freedom Parallel Mechanisms with Revolute Actuators. International Journal of Robotics Research, 2002, 21, 649-659.	8.5	40
256	SHaDe, a new 3-DOF haptic device. IEEE Transactions on Automation Science and Engineering, 2002, 18, 166-175.	2.3	121
257	ANALYSIS OF STRUCTURAL ACOUSTIC COUPLING OF A CYLINDRICAL SHELL WITH AN INTERNAL FLOOR PARTITION. Journal of Sound and Vibration, 2002, 250, 903-921.	3.9	27
258	Kinetostatic modeling of parallel mechanisms with a passive constraining leg and revolute actuators. Mechanism and Machine Theory, 2002, 37, 599-617.	4.5	76
259	Title is missing!. Multibody System Dynamics, 2002, 7, 145-170.	2.7	32
260	La synthèse d'une plate-forme de Gough-Stewart pour un espace atteignable prescrit. Mechanism and Machine Theory, 2001, 36, 327-342.	4.5	25
261	Forward displacement analysis of third-class analytic 3-RPR planar parallel manipulators. Mechanism and Machine Theory, 2001, 36, 1009-1018.	4.5	55
262	Generation and forward displacement analysis of two new classes of analytic 6-SPS parallel manipulators. Journal of Field Robotics, 2001, 18, 295-304.	0.7	10
263	Practical prototyping. IEEE Robotics and Automation Magazine, 2001, 8, 43-52.	2.0	27
264	Static balancing of spatial four-degree-of-freedom parallel mechanisms. Mechanism and Machine Theory, 2000, 35, 563-592.	4.5	74
265	Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators. Journal of Field Robotics, 2000, 17, 159-170.	0.7	45
266	Spatio-geometric impedance control of Gough-Stewart platforms. IEEE Transactions on Automation Science and Engineering, 1999, 15, 281-288.	2.3	21
267	Static balancing of 3-DOF planar parallel mechanisms. IEEE/ASME Transactions on Mechatronics, 1999, 4, 363-377.	5.8	83
268	Determination of closed form solution to the 2-D orientation workspace of Gough-Stewart parallel manipulators. IEEE Transactions on Automation Science and Engineering, 1999, 15, 1121-1125.	2.3	18
269	Kinematic analysis and singularity representation of spatial five-degree-of-freedom parallel mechanisms. Journal of Field Robotics, 1997, 14, 851-869.	0.7	55
270	Kinematische und statische analyse eines ebenen parallelen manipulators mit dem freiheitsgrad zwei. Mechanism and Machine Theory, 1996, 31, 149-160.	4.5	11

#	Article	IF	CITATIONS
271	Determination of the workspace of planar parallel manipulators with joint limits. Robotics and Autonomous Systems, 1996, 17, 129-138.	5.1	59
272	On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mechanism and Machine Theory, 1995, 30, 533-551.	4.5	152
273	Trajectory prediction for moving objects using artificial neural networks. IEEE Transactions on Industrial Electronics, 1995, 42, 147-158.	7.9	26
274	Generalized inverse kinematic functions for the Puma manipulators. IEEE Transactions on Automation Science and Engineering, 1995, 11, 404-408.	2.3	5
275	The direct kinematics of planar parallel manipulators: Special architectures and number of solutions. Mechanism and Machine Theory, 1994, 29, 1083-1097.	4.5	109
276	Etude et representation des lieux de singularite des manipulateurs parallelles spheriques a trois degres de liberte avec actionneurs prismatiques. Mechanism and Machine Theory, 1994, 29, 559-579.	4.5	37
277	A survey of simulation programs for the analysis of mechanical systems. Mathematics and Computers in Simulation, 1993, 35, 103-121.	4.4	6
278	Modelisation dynamique des systemes holonomes par la methode des reseaux vectoriels. Mechanism and Machine Theory, 1993, 28, 283-299.	4.5	2
279	Dynamic analysis of manipulators by the vector-network method. Robotics and Computer-Integrated Manufacturing, 1993, 10, 429-436.	9.9	0
280	Singularity analysis and representation of planar parallel manipulators. Robotics and Autonomous Systems, 1992, 10, 209-224.	5.1	72
281	The optimum design of robotic manipulators using dexterity indices. Robotics and Autonomous Systems, 1992, 9, 213-226.	5.1	173
282	Stiffness mapping for parallel manipulators. IEEE Transactions on Automation Science and Engineering, 1990, 6, 377-382.	2.3	439
283	Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Automation Science and Engineering, 1990, 6, 281-290.	2.3	1,428
284	Optimization of planar and spherical function generators as minimum-defect linkages. Mechanism and Machine Theory, 1989, 24, 293-307.	4.5	24
285	Stiffness Analysis of 3-RPR Planar Parallel Mechanism to the Stiffness Control. Applied Mechanics and Materials, 0, 16-19, 786-790.	0.2	3
286	Underactuated tendon-driven robotic/prosthetic hands: design issues. , 0, , .		19