Manuel I Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11594083/publications.pdf

Version: 2024-02-01

687363 477307 40 821 13 29 citations h-index g-index papers 40 40 40 721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Active Motion Induced by Random Electromagnetic Fields. ACS Photonics, 2022, 9, 1008-1014.	6.6	1
2	A proposal to measure Belinfante's curl of the spin optical force based on the Kerker conditions. European Physical Journal Plus, 2021, 136, 1.	2.6	2
3	Modulated flipping torque, spin-induced radiation pressure, and chiral sorting exerted by guided light. Optics Express, 2021, 29, 16969.	3.4	3
4	Multipole Engineering of Attractiveâ^'Repulsive and Bending Optical Forces. Advanced Photonics Research, 2021, 2, 2100082.	3.6	12
5	Nanojet Trapping of a Single Subâ€10Ânm Upconverting Nanoparticle in the Full Liquid Water Temperature Range. Small, 2021, 17, e2006764.	10.0	20
6	Optical Forces at the Nanoscale: Size and Electrostatic Effects. Nano Letters, 2018, 18, 602-609.	9.1	35
7	Control of the electromagnetic drag using fluctuating light fields. Physical Review A, 2018, 97, .	2.5	O
8	Analysis of the dynamics of electric dipoles in fluctuating electromagnetic fields. , 2018, , .		1
9	Crossover from superdiffusive to diffusive dynamics in fluctuating light fields. Physical Review A, 2016, 93, .	2.5	1
10	Arrested Dimer's Diffusion by Self-Induced Back-Action Optical Forces. ACS Photonics, 2016, 3, 1286-1293.	6.6	7
11	Dynamics of a small particle in a fluctuating random light field. Optics Letters, 2016, 41, 796.	3.3	2
12	Beam configuration proposal to verify that scattering forces come from the orbital part of the Poynting vector. Optics Letters, 2014, 39, 5122.	3.3	22
13	Non-conservative scattering forces on small particles. , 2013, , .		O
14	Marqués and Sáenz Reply:. Physical Review Letters, 2013, 111, 059302.	7.8	18
15	Scattering forces and electromagnetic momentum density in crossed circularly polarized standing waves: erratum. Optics Letters, 2012, 37, 4470.	3.3	3
16	Scattering forces and electromagnetic momentum density in crossed circularly polarized standing waves. Optics Letters, 2012, 37, 2787.	3.3	15
17	Plasmonic Nanoparticle Chain in a Light Field: A Resonant Optical Sail. Nano Letters, 2011, 11, 4597-4600.	9.1	13
18	Light control of silver nanoparticle's diffusion. Optics Express, 2011, 19, 11471.	3.4	19

#	Article	lF	CITATIONS
19	Attenuation of the depolarizing field in a thin film model relaxor. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 3955-3961.	2.6	3
20	Microscopic model for the formation of nanodomains in relaxor materials. Physical Review B, 2010, 81 , .	3.2	9
21	Monte Carlo study of the competition between long-range and short-range correlated disorder in a second-order phase transition. Physical Review E, 2009, 79, 052103.	2.1	1
22	Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field. Physical Review Letters, 2009, 102, 113602.	7.8	279
23	Giant Enhanced Diffusion of Gold Nanoparticles in Optical Vortex Fields. Nano Letters, 2009, 9, 3527-3531.	9.1	54
24	Proposed high-pressure calorimetric experiment to probe theoretical predictions on the liquid-liquid critical point hypothesis. Physical Review E, 2007, 76, 021503.	2.1	5
25	Test of cold denaturation mechanism for proteins as a function of water's structure. Physica A: Statistical Mechanics and Its Applications, 2007, 375, 37-43.	2.6	2
26	Thermodynamic behavior of a water model with a liquid–liquid critical point. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 708-712.	2.6	2
27	Behavior of the Local Mode's Potential in BaTiO3Studied by Effective Hamiltonian Numerical Simulations. Ferroelectrics, 2006, 337, 51-57.	0.6	0
28	Monte Carlo Study of the Composition Dependence of the Curie Temperature in Mixed Ising Systems. Ferroelectrics, 2006, 337, 19-23.	0.6	0
29	Mechanism for proteins destabilization at low temperatures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1487-1490.	1.8	8
30	Dilution Effects on the Transition Temperature of Ising Monolayers. Ferroelectrics, Letters Section, 2006, 33, 107-111.	1.0	0
31	First-principles study of instantaneous and averaged local potential inBaTiO3. Physical Review B, 2005, 71, .	3.2	15
32	Possible Mechanism for Cold Denaturation of Proteins at High Pressure. Physical Review Letters, 2003, 91, 138103.	7.8	95
33	Intramolecular coupling as a mechanism for a liquid-liquid phase transition. Physical Review E, 2003, 67, 011103.	2.1	105
34	Irrelevance of canonical or grand canonical constraints near a random fixed point in largeLsystems. Physical Review E, 2002, 65, 057104.	2.1	7
35	Numerical approach to phase transitions in nanoscopic layered systems. Nanotechnology, 2001, 12, 143-146.	2.6	10
36	Dynamic scaling in diluted systems: Deactivation through thermal dilution. Physical Review E, 2001, 63, 056114.	2.1	0

#	Article	IF	CITATIONS
37	Evolution of the universality class in slightly diluted (1>p>0.8) Ising systems. Physica A: Statistical Mechanics and Its Applications, 2000, 284, 187-194.	2.6	6
38	Composition dependence of the transition temperature in mixed ferroelectric-ferroelectric systems. Physical Review B, 2000, 62, 8561-8563.	3.2	12
39	Universality class of thermally diluted Ising systems at criticality. Physical Review E, 2000, 62, 191-196.	2.1	16
40	Self-averaging of random and thermally disordered diluted Ising systems. Physical Review E, 1999, 60, 2394-2397.	2.1	18