
Patricia Beatriz Tissera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/115928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library. Astrophysical Journal, Supplement Series, 2019, 240, 23.	7.7	299
2	The formation and survival of discs in a \hat{I} CDM universe. Monthly Notices of the Royal Astronomical Society, 2009, 396, 696-708.	4.4	232
3	Galaxy pairs in the 2dF survey - I. Effects of interactions on star formation in the field. Monthly Notices of the Royal Astronomical Society, 2003, 346, 1189-1196.	4.4	204
4	Effects of supernova feedback on the formation of galaxy discs. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1137-1149.	4.4	203
5	The origin of accreted stellar halo populations in the Milky Way using APOGEE, <i>Gaia</i> , and the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3426-3442.	4.4	199
6	Feedback and metal enrichment in cosmological SPH simulations ï¿½ï¿½ï¿½ï ¼2 II. A multiphase model with supernova energy feedback. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1125-1139.	4.4	196
7	Feedback and metal enrichment in cosmological smoothed particle hydrodynamics simulations — I. A model for chemical enrichment. Monthly Notices of the Royal Astronomical Society, 2005, 364, 552-564.	4.4	161
8	Chemical signatures of formation processes in the stellar populations of simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 420, 255-270.	4.4	139
9	Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations. Astrophysical Journal, 2018, 852, 49.	4.5	123
10	The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2589-2616.	4.4	113
11	Stellar haloes of simulated Milky-Way-like galaxies: chemical and kinematic properties. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3391-3400.	4.4	111
12	Active galactic nuclei and galaxy interactions. Monthly Notices of the Royal Astronomical Society, 2007, 375, 1017-1024.	4.4	104
13	Stellar haloes in Milky Way mass galaxies: from the inner to the outer haloes. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3128-3138.	4.4	92
14	Chemical evolution during gas-rich galaxy interactions. Monthly Notices of the Royal Astronomical Society, 2011, 417, 580-590.	4.4	83
15	Galaxy pairs in the 2dF survey - II. Effects of interactions on star formation in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2004, 352, 1081-1088.	4.4	82
16	Chemical evolution using smooth particle hydrodynamical cosmological simulations I. Implementation, tests and first results. Monthly Notices of the Royal Astronomical Society, 2001, 325, 34-48.	4.4	77
17	The mass—metallicity relation of interacting galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 386, L82-L86.	3.3	76
18	Chemodynamics of barred galaxies in cosmological simulations: On the Milky Way's quiescent merger history and <i>in-situ</i> bulge. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5936-5960.	4.4	72

#	Article	IF	CITATIONS
19	Formation history, structure and dynamics of discs and spheroids in simulated Milky Way mass galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 154-171.	4.4	71
20	Effects of galaxy interactions in different environments. Monthly Notices of the Royal Astronomical Society, 2006, 367, 1029-1038.	4.4	70
21	APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy. Astrophysical Journal, 2017, 845, 162.	4.5	68
22	Ram pressure stripping in a galaxy formation model - I. A novel numerical approach. Monthly Notices of the Royal Astronomical Society, 2010, 408, 2008-2021.	4.4	65
23	Clues for the origin of the fundamental metallicity relations - I. The hierarchical building up of the structure. Monthly Notices of the Royal Astronomical Society, 2007, 374, 323-336.	4.4	56
24	Dark matter response to galaxy formation. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	53
25	Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations. Astrophysical Journal, 2018, 852, 50.	4.5	53
26	Angular momentum evolution for galaxies in a ĥ-CDM scenario. Astronomy and Astrophysics, 2015, 584, A43.	5.1	51
27	Analysis of galaxy formation with hydrodynamics. Monthly Notices of the Royal Astronomical Society, 1997, 286, 384-392.	4.4	49
28	The oxygen abundance gradients in the gas discs of galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2208-2221.	4.4	49
29	Dark matter halo structure in CDM hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 1998, 297, 177-194.	4.4	47
30	Double starbursts triggered by mergers in hierarchical clustering scenarios. Monthly Notices of the Royal Astronomical Society, 2002, 333, 327-338.	4.4	45
31	The prevalence of pseudo-bulges in the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5742-5763.	4.4	40
32	A Gaia-Enceladus Analog in the EAGLE Simulation: Insights into the Early Evolution of the Milky Way. Astrophysical Journal Letters, 2019, 883, L5.	8.3	40
33	Evidence for the Third Stellar Population in the Milky Way's Disk. Astrophysical Journal, 2019, 887, 22.	4.5	39
34	Analysis of Star Formation in Galaxyâ€like Objects. Astrophysical Journal, 2000, 534, 636-649.	4.5	39
35	The effects of mergers on the formation of discbulge systems in hierarchical clustering scenarios. Monthly Notices of the Royal Astronomical Society, 2003, 338, 880-890.	4.4	38
36	The host galaxies of long-duration gamma-ray bursts in a cosmological hierarchical scenario. Monthly Notices of the Royal Astronomical Society, 2007, 375, 665-672.	4.4	37

#	Article	IF	CITATIONS
37	Global environmental effects versus galaxy interactions. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1157-1166.	4.4	37
38	The joint evolution of baryons and dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2010, 402, 776-788.	4.4	36
39	Clumpy disc and bulge formation. Monthly Notices of the Royal Astronomical Society, 2013, 436, 259-265.	4.4	35
40	The gas metallicity gradient and the star formation activity of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2982-2992.	4.4	35
41	The age structure of the Milky Way's halo. Nature Physics, 2016, 12, 1170-1176.	16.7	33
42	Disk Formation in Hierarchical Hydrodynamical Simulations:A Way Out of the Angular Momentum Catastrophe. Astrophysical Journal, 1998, 508, L123-L127.	4.5	33
43	Building a control sample for galaxy pairs. Monthly Notices of the Royal Astronomical Society, 2009, 397, 748-756.	4.4	31
44	The age–chemical abundance structure of the Galaxy I: evidence for a late-accretion event in the outer disc at z â^1⁄4 0.6. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2561-2575.	4.4	30
45	Galaxy pairs in cosmological simulations: effects of interactions on colours and chemical abundances. Astronomy and Astrophysics, 2006, 459, 361-369.	5.1	29
46	CHRONOGRAPHY OF THE MILKY WAY'S HALO SYSTEM WITH FIELD BLUE HORIZONTAL-BRANCH STARS. Astrophysical Journal Letters, 2015, 813, L16.	8.3	28
47	Characterization of the VVV Survey RR Lyrae Population across the Southern Galactic Plane. Astronomical Journal, 2017, 153, 179.	4.7	28
48	The abundances and properties of Dual AGN and their host galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2712-2720.	4.4	28
49	SDSS IV MaNGA: Dependence of Clobal and Spatially Resolved SFR–M _{â^—} Relations on Galaxy Properties. Astrophysical Journal, 2018, 854, 159.	4.5	26
50	The Photometric Metallicity and Carbon Distributions of the Milky Way's Halo and Solar Neighborhood from S-PLUS Observations of SDSS Stripe 82. Astrophysical Journal, 2021, 912, 147.	4.5	25
51	Disc-like objects in hierarchical hydrodynamical simulations: comparison with observations. Monthly Notices of the Royal Astronomical Society, 2001, 325, 119-132.	4.4	24
52	The stellar metallicity gradients in galaxy discs in a cosmological scenario. Astronomy and Astrophysics, 2016, 592, A93.	5.1	24
53	The evolution of the metallicity gradient and the star formation efficiency in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4404-4413.	4.4	24
54	Baryon effects on void statistics in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4434-4452.	4.4	24

#	Article	IF	CITATIONS
55	The influence of halo assembly on galaxies and galaxy groups. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2229-2237.	4.4	22
56	Stellar feedback from high-mass X-ray binaries in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3071-3080.	4.4	22
57	The central spheroids of Milky Way mass-sized galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1656-1666.	4.4	21
58	A Universal Fundamental Plane and the M _{dyn} –M _⋆ Relation for Galaxies with CALIFA and MaNGA. Astrophysical Journal, 2020, 900, 109.	4.5	21
59	The halo shape and evolution of polar disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1967-1979.	4.4	20
60	On the mass assembly of low-mass galaxies in hydrodynamical simulations of structure formation. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2736-2752.	4.4	18
61	SDSS-IV MaNGA: A Star Formation–Baryonic Mass Relation at Kiloparsec Scales. Astrophysical Journal, 2021, 909, 131.	4.5	17
62	Milky Way type galaxies in a $\hat{\nu}CDM$ cosmology. Monthly Notices of the Royal Astronomical Society, 2009, 395, 210-217.	4.4	16
63	Non-parametric morphologies of mergers in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1106-1122.	4.4	16
64	The assembly history of the Galactic inner halo inferred from α-element patterns. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1745-1756.	4.4	16
65	The mass–size plane of EACLE galaxies. Astronomy and Astrophysics, 2019, 629, L3.	5.1	16
66	TYPE Ia SUPERNOVA PROGENITORS AND CHEMICAL ENRICHMENT IN HYDRODYNAMICAL SIMULATIONS. I. THE SINGLE-DEGENERATE SCENARIO. Astrophysical Journal, 2015, 810, 137.	4.5	15
67	Baryons shaping dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5679-5691.	4.4	15
68	Chemical Enrichment at High Redshifts: Understanding the Nature of Damped Lyα Systems in Hierarchical Models. Astrophysical Journal, 2001, 557, 527-532.	4.5	14
69	Host galaxies of long gamma-ray bursts in the Millennium Simulation. Monthly Notices of the Royal Astronomical Society, 0, 408, 647-656.	4.4	14
70	Assembly of spheroid-dominated galaxies in the EAGLE simulation. Astronomy and Astrophysics, 2019, 629, A37.	5.1	14
71	The Origin of the Milky Way's Halo Age Distribution. Astrophysical Journal Letters, 2018, 859, L7.	8.3	13
72	Fingerprints of the hierarchical building-up of the structure on the gas kinematics of galaxies. Astronomy and Astrophysics, 2012, 546, A52.	5.1	12

#	Article	IF	CITATIONS
73	Constraints on the Galactic Inner Halo Assembly History from the Age Gradient of Blue Horizontal-branch Stars. Astrophysical Journal, 2019, 884, 67.	4.5	12
74	The evolution of the oxygen abundance gradients in star-forming galaxies in the <scp>eagle</scp> simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1667-1684.	4.4	12
75	The metallicity and star formation activity of long gamma-ray burst hosts for zÂ<Â3: insights from the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4921-4932.	4.4	11
76	Planes of Satellites around Simulated Disk Galaxies. I. Finding High-quality Planar Configurations from Positional Information and Their Comparison to MW/M31 Data. Astrophysical Journal, 2020, 897, 71.	4.5	11
77	Building blocks in hierarchical clustering scenarios and their connection with damped Ly systems. Monthly Notices of the Royal Astronomical Society, 2003, 343, 959-970.	4.4	8
78	Ram pressure profiles in galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2011, 416, 3170-3176.	4.4	8
79	Azimuthal variations of oxygen abundance profiles in star-forming regions of disc galaxies in EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4894-4901.	4.4	7
80	Satellite galaxies in groups in the CIELO Project I. Gas removal from galaxies and its re-distribution in the intragroup medium. Monthly Notices of the Royal Astronomical Society, 2022, 514, 6157-6172.	4.4	7
81	Chemical abundances and spatial distribution of long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3417-3422.	4.4	6
82	Properties of the circumgalactic medium in simulations compared to observations. Astronomy and Astrophysics, 2018, 609, A66.	5.1	6
83	The role of AGN feedback in the structure, kinematics, and evolution of ETGs in Horizon simulations. Astronomy and Astrophysics, 2021, 652, A44.	5.1	5
84	Modelling H2 and its effects on star formation using a joint implementation of gadget-3 and KROME. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2325-2345.	4.4	4
85	Nitrogen abundances in damped Lyman systems: the combined effects of SNII and SNIa in a hierarchical clustering scenario. Monthly Notices of the Royal Astronomical Society, 2002, 337, L27-L30.	4.4	3
86	Evolution of systems of galaxies in cold dark matter models. Astrophysical Journal, 1994, 429, 29.	4.5	1
87	Exploring the outskirts of the EAGLE disc galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5340-5354.	4.4	1
88	Studying Galactic Chemical Properties by using Cosmological Numerical Simulations. Publications of the Astronomical Society of Australia, 2004, 21, 192-196.	3.4	0
89	Effects of Supernova Feedback on the Formation of Galaxies. Proceedings of the International Astronomical Union, 2008, 4, 369-374.	0.0	0
90	Control sample for galaxy pairs: Simulations and Observations. Proceedings of the International Astronomical Union, 2009, 5, 410-411.	0.0	0

#	Article	IF	CITATIONS
91	The Milky Way and the current status of galaxy formation models. Proceedings of the International Astronomical Union, 2013, 9, 179-184.	0.0	Ο
92	Why galaxies care about Type Ia supernovae?. Proceedings of the International Astronomical Union, 2014, 10, 206-209.	0.0	0
93	Effects of mergers on non-parametric morphologies. Proceedings of the International Astronomical Union, 2016, 12, 51-54.	0.0	0
94	Understanding planes of satellites. Proceedings of the International Astronomical Union, 2018, 14, 477-480.	0.0	0
95	Galaxy Evolution in the context of radial metallicity gradients. Proceedings of the International Astronomical Union, 2018, 14, 255-256.	0.0	0
96	Large-scale structure in biased cold dark matter cosmologies. Astrophysical Journal, 1993, 414, 30.	4.5	0
97	The evolution of the oxygen radial gradients in spiral galaxies. Proceedings of the International Astronomical Union, 2018, 14, 265-265.	0.0	Ο