Naomi R Wray

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1159062/naomi-r-wray-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42,488 399 93 201 h-index g-index citations papers 10.6 7.65 472 55,930 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
399	Impact of CYP2C19 metaboliser status on SSRI response: a retrospective study of 9500 participants of the Australian Genetics of Depression Study <i>Pharmacogenomics Journal</i> , 2022 ,	3.5	1
398	Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis Neuron, 2022,	13.9	8
397	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1 <i>Genome Medicine</i> , 2022 , 14, 7	14.4	0
396	Investigating the phenotypic and genetic associations between personality traits and suicidal behavior across major mental health diagnoses <i>European Archives of Psychiatry and Clinical Neuroscience</i> , 2022 , 1	5.1	Ο
395	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS <i>Science Translational Medicine</i> , 2022 , 14, eabj0264	17.5	4
394	Mapping genomic loci implicates genes and synaptic biology in schizophrenia Nature, 2022,	50.4	35
393	Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. <i>Nature Communications</i> , 2022 , 13,	17.4	5
392	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. <i>Nature Genetics</i> , 2021 , 53, 1636-1648	36.3	19
391	Understanding genetic risk factors for common side effects of antidepressant medications. <i>Communications Medicine</i> , 2021 , 1,		2
390	Autism-related dietary preferences mediate autism-gut microbiome associations. <i>Cell</i> , 2021 , 184, 5916	-5931.0	e1370
389	Polygenic burden could explain high rates of affective disorders in a community with restricted founder population. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2021 , 186, 367-375	3.5	
388	The Australian Genetics of Depression Study: New Risk Loci and Dissecting Heterogeneity Between Subtypes <i>Biological Psychiatry</i> , 2021 ,	7.9	2
387	Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. <i>Molecular Psychiatry</i> , 2021 , 26, 2070-2081	15.1	19
386	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. <i>Genome Biology</i> , 2021 , 22, 90	18.3	6
385	Genome-wide gene expression changes in postpartum depression point towards an altered immune landscape. <i>Translational Psychiatry</i> , 2021 , 11, 155	8.6	5
384	Polygenic risk score analysis for amyotrophic lateral sclerosis leveraging cognitive performance, educational attainment and schizophrenia. <i>European Journal of Human Genetics</i> , 2021 ,	5.3	7
383	Comorbid Chronic Pain and Depression: Shared Risk Factors and Differential Antidepressant Effectiveness. <i>Frontiers in Psychiatry</i> , 2021 , 12, 643609	5	13

(2021-2021)

382	Risk of Early-Onset Depression Associated With Polygenic Liability, Parental Psychiatric History, and Socioeconomic Status. <i>JAMA Psychiatry</i> , 2021 , 78, 387-397	14.5	11
381	A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts. <i>Biological Psychiatry</i> , 2021 , 90, 611-620	7.9	17
380	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. <i>Nature Genetics</i> , 2021 , 53, 817-829	36.3	83
379	Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. <i>American Journal of Human Genetics</i> , 2021 , 108, 786-798	11	19
378	Gene action, genetic variation, and GWAS: A user-friendly web tool. <i>PLoS Genetics</i> , 2021 , 17, e1009548	6	O
377	Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction. <i>American Journal of Human Genetics</i> , 2021 , 108, 1001-1011	11	2
376	Examining Sex-Differentiated Genetic Effects Across Neuropsychiatric and Behavioral Traits. Biological Psychiatry, 2021 , 89, 1127-1137	7.9	12
375	Association of Antihypertensive Drug Target Genes With Psychiatric Disorders: A Mendelian Randomization Study. <i>JAMA Psychiatry</i> , 2021 , 78, 623-631	14.5	О
374	Genetic risk for chronic pain is associated with lower antidepressant effectiveness: Converging evidence for a depression subtype. <i>Australian and New Zealand Journal of Psychiatry</i> , 2021 , 4867421103	37491	O
373	Genetic association study of childhood aggression across raters, instruments, and age. <i>Translational Psychiatry</i> , 2021 , 11, 413	8.6	7
372	Risk in Relatives, Heritability, SNP-Based Heritability, and Genetic Correlations in Psychiatric Disorders: A Review. <i>Biological Psychiatry</i> , 2021 , 89, 11-19	7.9	20
371	Cardiovascular disease, psychiatric diagnosis and sex differences in the multistep hypothesis of amyotrophic lateral sclerosis. <i>European Journal of Neurology</i> , 2021 , 28, 421-429	6	7
370	From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer. <i>JAMA Psychiatry</i> , 2021 , 78, 101-109	14.5	49
369	Could Polygenic Risk Scores Be Useful in Psychiatry?: A Review. <i>JAMA Psychiatry</i> , 2021 , 78, 210-219	14.5	53
368	Genome-wide analyses of behavioural traits are subject to bias by misreports and longitudinal changes. <i>Nature Communications</i> , 2021 , 12, 20211	17.4	16
367	GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. <i>Nature Communications</i> , 2021 , 12, 1146	17.4	20
366	Widespread signatures of natural selection across human complex traits and functional genomic categories. <i>Nature Communications</i> , 2021 , 12, 1164	17.4	12
365	Analysis of common genetic variation and rare CNVs in the Australian Autism Biobank. <i>Molecular Autism</i> , 2021 , 12, 12	6.5	4

364	Schizophrenia polygenic risk scores in youth mental health: preliminary associations with diagnosis, clinical stage and functioning. <i>BJPsych Open</i> , 2021 , 7, e58	5	1
363	Phenotypic covariance across the entire spectrum of relatedness for 86 billion pairs of individuals. <i>Nature Communications</i> , 2021 , 12, 1050	17.4	7
362	Genomic partitioning of inbreeding depression in humans. <i>American Journal of Human Genetics</i> , 2021 , 108, 1488-1501	11	3
361	Polygenic Risk Scores Derived From Varying Definitions of Depression and Risk of Depression. JAMA Psychiatry, 2021 , 78, 1152-1160	14.5	3
360	Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course. <i>Behavior Genetics</i> , 2021 , 51, 592-606	3.2	2
359	Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum. <i>Biological Psychiatry</i> , 2021 , 90, 317-327	7.9	12
358	MiNDAUS partnership: a roadmap for the cure and management of motor Neurone disease. <i>Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration</i> , 2021 , 1-8	3.6	О
357	Discovery and implications of polygenicity of common diseases. <i>Science</i> , 2021 , 373, 1468-1473	33.3	13
356	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. <i>Nature Genetics</i> , 2021 , 53, 1311-1321	36.3	27
355	The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. <i>JAMA Psychiatry</i> , 2021 , 78, 1258-1269	14.5	7
354	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. <i>Biological Psychiatry</i> , 2021 ,	7.9	11
353	Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies. <i>Biological Psychiatry</i> , 2020 , 88, 470-479	7.9	6
352	Nick Martin and the Genetics of Depression: Sample Size, Sample Size, Sample Size. <i>Twin Research and Human Genetics</i> , 2020 , 23, 109-111	2.2	
351	ALS in Danish Registries: Heritability and links to psychiatric and cardiovascular disorders. <i>Neurology: Genetics</i> , 2020 , 6, e398	3.8	15
350	Cohort profile: the Australian genetics of depression study. <i>BMJ Open</i> , 2020 , 10, e032580	3	13
349	Mutations in heat shock protein beta-1 (HSPB1) are associated with a range of clinical phenotypes related to different patterns of motor neuron dysfunction: A case series. <i>Journal of the Neurological Sciences</i> , 2020 , 413, 116809	3.2	3
348	Genetic stratification of depression in UK Biobank. <i>Translational Psychiatry</i> , 2020 , 10, 163	8.6	8
347	Bayesian reassessment of the epigenetic architecture of complex traits. <i>Nature Communications</i> , 2020 , 11, 2865	17.4	18

(2020-2020)

346	What do we know about the variability in survival of patients with amyotrophic lateral sclerosis?. <i>Expert Review of Neurotherapeutics</i> , 2020 , 20, 921-941	4.3	4
345	Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson's disease. <i>Nature Communications</i> , 2020 , 11, 1238	17.4	25
344	Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. <i>Npj Genomic Medicine</i> , 2020 , 5, 10	6.2	11
343	Association of Mental Disorder in Childhood and Adolescence With Subsequent Educational Achievement. <i>JAMA Psychiatry</i> , 2020 , 77, 797-805	14.5	31
342	Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults. <i>Genome Medicine</i> , 2020 , 12, 60	14.4	9
341	Progression and survival of patients with motor neuron disease relative to their fecal microbiota. <i>Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration</i> , 2020 , 21, 549-562	3.6	11
340	Genome-wide association study of dietary intake in the UK biobank study and its associations with schizophrenia and other traits. <i>Translational Psychiatry</i> , 2020 , 10, 51	8.6	10
339	Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. <i>Molecular Psychiatry</i> , 2020 , 25, 1430-1446	15.1	47
338	Promoter-anchored chromatin interactions predicted from genetic analysis of epigenomic data. <i>Nature Communications</i> , 2020 , 11, 2061	17.4	1
337	Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. <i>Nature Communications</i> , 2020 , 11, 1647	17.4	58
336	Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals. <i>Aging</i> , 2020 , 12, 14092-14124	5.6	6
335	repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. <i>Brain Communications</i> , 2020 , 2, fcaa064	4.5	12
334	A unified framework for association and prediction from vertex-wise grey-matter structure. <i>Human Brain Mapping</i> , 2020 , 41, 4062-4076	5.9	3
333	Genetic comorbidity between major depression and cardio-metabolic traits, stratified by age at onset of major depression. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2020 , 183, 309-330	3.5	8
332	Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. <i>Cell Reports</i> , 2020 , 33, 108456	10.6	6
331	Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. <i>Cell Reports</i> , 2020 , 33, 108323	10.6	18
330	Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture. <i>Nature Communications</i> , 2020 , 11, 4799	17.4	41
329	Genetic control of temperament traits across species: association of autism spectrum disorder risk genes with cattle temperament. <i>Genetics Selection Evolution</i> , 2020 , 52, 51	4.9	9

328	RICOPILI: Rapid Imputation for COnsortias PlpeLine. <i>Bioinformatics</i> , 2020 , 36, 930-933	7.2	72
327	Evaluating the Impact of Nonrandom Mating: Psychiatric Outcomes Among the Offspring of Pairs Diagnosed With Schizophrenia and Bipolar Disorder. <i>Biological Psychiatry</i> , 2020 , 87, 253-262	7.9	4
326	Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With Depression. <i>Biological Psychiatry</i> , 2020 , 87, 419-430	7.9	9
325	Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. <i>Genome Medicine</i> , 2019 , 11, 54	14.4	81
324	Extreme inbreeding in a European ancestry sample from the contemporary UK population. <i>Nature Communications</i> , 2019 , 10, 3719	17.4	14
323	A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. <i>Nature Neuroscience</i> , 2019 , 22, 353-361	25.5	93
322	Quantifying between-cohort and between-sex genetic heterogeneity in major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 439-447	3.5	16
321	Sleep Disorders and Risk of Incident Depression: A Population Case-Control Study. <i>Twin Research and Human Genetics</i> , 2019 , 22, 140-146	2.2	12
320	Genetic correlations of polygenic disease traits: from theory to practice. <i>Nature Reviews Genetics</i> , 2019 , 20, 567-581	30.1	98
319	OSCA: a tool for omic-data-based complex trait analysis. <i>Genome Biology</i> , 2019 , 20, 107	18.3	40
318	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. <i>American Journal of Psychiatry</i> , 2019 , 176, 651-660	11.9	103
317	Gut microbiota in ALS: possible role in pathogenesis?. Expert Review of Neurotherapeutics, 2019, 19, 785	5-80,5	21
316	Examining the Impact of Imputation Errors on Fine-Mapping Using DNA Methylation QTL as a Model Trait. <i>Genetics</i> , 2019 , 212, 577-586	4	1
315	Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. <i>Nature Communications</i> , 2019 , 10, 2239	17.4	23
314	Genome-wide association study of medication-use and associated disease in the UK Biobank. <i>Nature Communications</i> , 2019 , 10, 1891	17.4	48
313	Genome-wide association study identifies 30 loci associated with bipolar disorder. <i>Nature Genetics</i> , 2019 , 51, 793-803	36.3	662
312	Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction. <i>Genetics</i> , 2019 , 211, 1131-1141	4	47
311	A DIRECT TEST OF THE DIATHESIS-STRESS MODEL FOR DEPRESSION. <i>European Neuropsychopharmacology</i> , 2019 , 29, S805-S806	1.2	2

(2018-2019)

310	Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium. <i>Psychological Medicine</i> , 2019 , 49, 1218-1226	6.9	33
309	Attention deficit hyperactivity disorder symptoms as antecedents of later psychotic outcomes in 22q11.2 deletion syndrome. <i>Schizophrenia Research</i> , 2019 , 204, 320-325	3.6	11
308	Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. <i>Science Advances</i> , 2019 , 5, eaaw3538	14.3	59
307	Assortative Mating in Autism Spectrum Disorder: Toward an Evidence Base From DNA Data, but Not There Yet. <i>Biological Psychiatry</i> , 2019 , 86, 250-252	7.9	1
306	Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. <i>Nature Communications</i> , 2019 , 10, 3160	17.4	21
305	"Arte et Labore"-A Blackburn Rovers fan's legacy in human complex trait genetics. <i>Journal of Animal Breeding and Genetics</i> , 2019 , 136, 273-278	2.9	O
304	Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. <i>JAMA Psychiatry</i> , 2019 , 76, 1026-1034	14.5	24
303	Genetic risk scores for major psychiatric disorders and the risk of postpartum psychiatric disorders. <i>Translational Psychiatry</i> , 2019 , 9, 288	8.6	10
302	Genetic correlates of social stratification in Great Britain. <i>Nature Human Behaviour</i> , 2019 , 3, 1332-1342	12.8	83
301	Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. <i>Nature Neuroscience</i> , 2019 , 22, 343-352	25.5	639
300	Improved polygenic prediction by Bayesian multiple regression on summary statistics. <i>Nature Communications</i> , 2019 , 10, 5086	17.4	114
299	A resource-efficient tool for mixed model association analysis of large-scale data. <i>Nature Genetics</i> , 2019 , 51, 1749-1755	36.3	102
298	Association of Whole-Genome and NETRIN1 Signaling Pathway-Derived Polygenic Risk Scores for Major Depressive Disorder and White Matter Microstructure in the UK Biobank. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2019 , 4, 91-100	3.4	12
297	Cumulative influence of parity-related genomic changes in multiple sclerosis. <i>Journal of Neuroimmunology</i> , 2019 , 328, 38-49	3.5	4
296	Is Schizophrenia a Risk Factor for Breast Cancer?-Evidence From Genetic Data. <i>Schizophrenia Bulletin</i> , 2019 , 45, 1251-1256	1.3	11
295	Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nature Communications, 2018, 9, 989	17.4	76
294	Reply to Kardos et al.: Estimation of inbreeding depression from SNP data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E2494-E2495	11.5	4
293	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. <i>Nature Genetics</i> , 2018 , 50, 381-389	36.3	787

292	Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. <i>Nature Communications</i> , 2018 , 9, 918	17.4	110
291	Sizing up whole-genome sequencing studies of common diseases. <i>Nature Genetics</i> , 2018 , 50, 635-637	36.3	10
290	Signatures of negative selection in the genetic architecture of human complex traits. <i>Nature Genetics</i> , 2018 , 50, 746-753	36.3	178
289	GWAS of epigenetic aging rates in blood reveals a critical role for TERT. <i>Nature Communications</i> , 2018 , 9, 387	17.4	106
288	Causal associations between risk factors and common diseases inferred from GWAS summary data. <i>Nature Communications</i> , 2018 , 9, 224	17.4	346
287	Hypermetabolism in ALS is associated with greater functional decline and shorter survival. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2018 , 89, 1016-1023	5.5	96
286	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. <i>Nature Genetics</i> , 2018 , 50, 668-681	36.3	1301
285	A DNA methylation biomarker of alcohol consumption. <i>Molecular Psychiatry</i> , 2018 , 23, 422-433	15.1	164
284	Brain age predicts mortality. <i>Molecular Psychiatry</i> , 2018 , 23, 1385-1392	15.1	260
283	A direct test of the diathesis-stress model for depression. <i>Molecular Psychiatry</i> , 2018 , 23, 1590-1596	15.1	114
282	Does Childhood Trauma Moderate Polygenic Risk for Depression? A Meta-analysis of 5765 Subjects From the Psychiatric Genomics Consortium. <i>Biological Psychiatry</i> , 2018 , 84, 138-147	7.9	48
281	Embracing polygenicity: a review of methods and tools for psychiatric genetics research. <i>Psychological Medicine</i> , 2018 , 48, 1055-1067	6.9	48
280	The epigenetic clock and telomere length are independently associated with chronological age and mortality. <i>International Journal of Epidemiology</i> , 2018 , 45, 424-432	7.8	153
279	Accuracy of Inferred APOE Genotypes for a Range of Genotyping Arrays and Imputation Reference Panels. <i>Journal of Alzheimerd Disease</i> , 2018 , 64, 49-54	4.3	5
278	Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder. <i>Frontiers in Psychiatry</i> , 2018 , 9, 207	5	15
277	Analysis of shared heritability in common disorders of the brain. <i>Science</i> , 2018 , 360,	33.3	666
276	DNA Methylation Signatures of Depressive Symptoms in Middle-aged and Elderly Persons: Meta-analysis of Multiethnic Epigenome-wide Studies. <i>JAMA Psychiatry</i> , 2018 , 75, 949-959	14.5	51
275	Familiality of Psychiatric Disorders and Risk of Postpartum Psychiatric Episodes: A Population-Based Cohort Study. <i>American Journal of Psychiatry</i> , 2018 , 175, 783-791	11.9	14

(2018-2018)

274	Comparison of Genotypic and Phenotypic Correlations: Cheverud's Conjecture in Humans. <i>Genetics</i> , 2018 , 209, 941-948	4	48
273	Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model. <i>Cell</i> , 2018 , 173, 1573-1580	56.2	151
272	Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. <i>Nature Communications</i> , 2018 , 9, 2282	17.4	147
271	Genome-wide gene-environment interaction in depression: A systematic evaluation of candidate genes: The childhood trauma working-group of PGC-MDD. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2018 , 177, 40-49	3.5	43
270	A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. <i>Biological Psychiatry</i> , 2018 , 83, 1044-1053	7.9	93
269	Identification of 55,000 Replicated DNA Methylation QTL. Scientific Reports, 2018, 8, 17605	4.9	78
268	Imprint of assortative mating on the human genome. <i>Nature Human Behaviour</i> , 2018 , 2, 948-954	12.8	45
267	Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell profiles and epigenetic ageing. <i>Clinical Epigenetics</i> , 2018 , 10, 159	7.7	17
266	Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. <i>Nature Communications</i> , 2018 , 9, 5407	17.4	37
265	The association between neonatal vitamin D status and risk of schizophrenia. <i>Scientific Reports</i> , 2018 , 8, 17692	4.9	49
264	PPD ACT: an app-based genetic study of postpartum depression. <i>Translational Psychiatry</i> , 2018 , 8, 260	8.6	10
263	Epigenetic prediction of complex traits and death. <i>Genome Biology</i> , 2018 , 19, 136	18.3	77
262	Genotype effects contribute to variation in longitudinal methylome patterns in older people. <i>Genome Medicine</i> , 2018 , 10, 75	14.4	21
261	Study protocol for the Australian autism biobank: an international resource to advance autism discovery research. <i>BMC Pediatrics</i> , 2018 , 18, 284	2.6	9
260	GWAS on family history of Alzheimer's disease. Translational Psychiatry, 2018, 8, 99	8.6	238
259	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. <i>American Journal of Human Genetics</i> , 2018 , 102, 1185-1194	11	55
258	Age at first birth in women is genetically associated with increased risk of schizophrenia. <i>Scientific Reports</i> , 2018 , 8, 10168	4.9	11
257	Trans-eQTLs identified in whole blood have limited influence on complex disease biology. <i>European Journal of Human Genetics</i> , 2018 , 26, 1361-1368	5.3	1

256	Misestimation of heritability and prediction accuracy of male-pattern baldness. <i>Nature Communications</i> , 2018 , 9, 2537	17.4	14
255	A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway Is Associated With Major Depressive Disorder. <i>Biological Psychiatry</i> , 2017 , 81, 336-346	7.9	25
254	Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. <i>Biological Psychiatry</i> , 2017 , 81, 325-335	7.9	129
253	Using information of relatives in genomic prediction to apply effective stratified medicine. <i>Scientific Reports</i> , 2017 , 7, 42091	4.9	31
252	Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. <i>Translational Psychiatry</i> , 2017 , 7, e1155	8.6	100
251	Genetic signatures of high-altitude adaptation in Tibetans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4189-4194	11.5	93
250	Genetic effects influencing risk for major depressive disorder in China and Europe. <i>Translational Psychiatry</i> , 2017 , 7, e1074	8.6	48
249	Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. <i>Expert Review of Neurotherapeutics</i> , 2017 , 17, 561-577	4.3	14
248	Genome-wide Regional Heritability Mapping Identifies a Locus Within the TOX2 Gene Associated With Major Depressive Disorder. <i>Biological Psychiatry</i> , 2017 , 82, 312-321	7.9	17
247	CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits. <i>Nature Communications</i> , 2017 , 8, 744	17.4	37
246	Inference in Psychiatry via 2-Sample Mendelian Randomization-From Association to Causal Pathway?. <i>JAMA Psychiatry</i> , 2017 , 74, 1191-1192	14.5	11
245	Genetic Association of Major Depression With Atypical Features and Obesity-Related Immunometabolic Dysregulations. <i>JAMA Psychiatry</i> , 2017 , 74, 1214-1225	14.5	109
244	Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach. <i>PLoS Medicine</i> , 2017 , 14, e1002215	11.6	162
243	Performance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score method. <i>BMC Medical Genetics</i> , 2017 , 18, 94	2.1	20
242	Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. <i>Genome Medicine</i> , 2017 , 9, 97	14.4	17
241	Concepts, estimation and interpretation of SNP-based heritability. <i>Nature Genetics</i> , 2017 , 49, 1304-1310	036.3	217
240	Comparison of faecal microbe diversity between motor neurone disease (mnd) and control participants. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2017 , 88, e1.83-e1	5.5	
239	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. <i>Nature Communications</i> , 2017 , 8, 611	17.4	45

238	Whole exome sequencing and DNA methylation analysis in a clinical amyotrophic lateral sclerosis cohort. <i>Molecular Genetics & Molecular Genetics & Molecular</i>	2.3	8
237	Detection and quantification of inbreeding depression for complex traits from SNP data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8602-8607	11.5	20
236	Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. <i>Nature Communications</i> , 2017 , 8, 16015	17.4	80
235	10 Years of GWAS Discovery: Biology, Function, and Translation. <i>American Journal of Human Genetics</i> , 2017 , 101, 5-22	11	1651
234	Investigating the relationship between iron and depression. <i>Journal of Psychiatric Research</i> , 2017 , 94, 148-155	5.2	3
233	Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: a next-generation sequencing study. <i>Molecular Psychiatry</i> , 2017 , 22, 580-584	15.1	25
232	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. <i>Nature Genetics</i> , 2017 , 49, 27-35	36.3	530
231	High loading of polygenic risk in cases with chronic schizophrenia. <i>Molecular Psychiatry</i> , 2016 , 21, 969-7	415.1	44
230	Evidence of CNIH3 involvement in opioid dependence. <i>Molecular Psychiatry</i> , 2016 , 21, 608-14	15.1	74
229	GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4579-80	11.5	25
228	Epigenetic Signatures of Cigarette Smoking. Circulation: Cardiovascular Genetics, 2016, 9, 436-447		442
227	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. <i>Nature Genetics</i> , 2016 , 48, 1043-8	36.3	328
226	Exploring Boundaries for the Genetic Consequences of Assortative Mating for Psychiatric Traits. <i>JAMA Psychiatry</i> , 2016 , 73, 1189-1195	14.5	36
225	Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2016 , 171B, 276-89	3.5	23
224	Meta-analysis of genome-wide association studies of anxiety disorders. <i>Molecular Psychiatry</i> , 2016 , 21, 1391-9	15.1	213
223	Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. <i>Lancet, The</i> , 2016 , 387, 1085-1093	40	216
222	Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women. <i>JAMA Psychiatry</i> , 2016 , 73, 497-505	14.5	40
221	Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. <i>Nature Genetics</i> , 2016 , 48, 481-7	36.3	929

220	Disease and Polygenic Architecture: Avoid Trio Design and Appropriately Account for Unscreened Control Subjects for Common Disease. <i>American Journal of Human Genetics</i> , 2016 , 98, 382-91	11	27
219	Across-cohort QC analyses of GWAS summary statistics from complex traits. <i>European Journal of Human Genetics</i> , 2016 , 25, 137-146	5.3	13
218	DNA methylation-based measures of biological age: meta-analysis predicting time to death. <i>Aging</i> , 2016 , 8, 1844-1865	5.6	531
217	Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits. <i>Genome Medicine</i> , 2016 , 8, 84	14.4	59
216	A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. <i>Nature Genetics</i> , 2016 , 48, 803-10	36.3	45
215	Risk of psychiatric illness from advanced paternal age is not predominantly from de novo mutations. <i>Nature Genetics</i> , 2016 , 48, 718-24	36.3	74
214	Genetic overlap between diagnostic subtypes of ischemic stroke. Stroke, 2015, 46, 615-9	6.7	33
213	Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations. <i>American Journal of Human Genetics</i> , 2015 , 97, 75-85	11	85
212	Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model. <i>PLoS Genetics</i> , 2015 , 11, e1004969	6	206
211	Cohort Profile Update: The Mater-University of Queensland Study of Pregnancy (MUSP). <i>International Journal of Epidemiology</i> , 2015 , 44, 78-78f	7.8	82
210	Polygenic Risk Score, Parental Socioeconomic Status, Family History of Psychiatric Disorders, and the Risk for Schizophrenia: A Danish Population-Based Study and Meta-analysis. <i>JAMA Psychiatry</i> , 2015 , 72, 635-41	14.5	177
209	DNA methylation age of blood predicts all-cause mortality in later life. <i>Genome Biology</i> , 2015 , 16, 25	18.3	670
208	Heritability of Transforming Growth Factor-II and Tumor Necrosis Factor-Receptor Type 1 Expression and Vitamin D Levels in Healthy Adolescent Twins. <i>Twin Research and Human Genetics</i> , 2015 , 18, 28-35	2.2	16
207	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. <i>Nature Genetics</i> , 2015 , 47, 1385-92	36.3	299
206	Novel directions for GIE analysis in psychiatry. <i>Epidemiology and Psychiatric Sciences</i> , 2015 , 24, 12-9	5.1	10
205	The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort		3.55
Ĭ	1936. International Journal of Epidemiology, 2015 , 44, 1388-96	7.8	357
204		2.9	9

(2014-2015)

202	Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. <i>Nature Genetics</i> , 2015 , 47, 1114-20	36.3	522
201	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. <i>International Journal of Epidemiology</i> , 2015 , 44, 1706-21	7.8	43
200	Concepts and Misconceptions about the Polygenic Additive Model Applied to Disease. <i>Human Heredity</i> , 2015 , 80, 165-70	1.1	15
199	The association between lower educational attainment and depression owing to shared genetic effects? Results in ~25,000 subjects. <i>Molecular Psychiatry</i> , 2015 , 20, 735-43	15.1	39
198	Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. <i>Journal of Neuroscience</i> , 2015 , 35, 8132-44	6.6	38
197	Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. <i>Genome Biology</i> , 2015 , 16, 266	18.3	234
196	EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex. <i>Development</i> (Cambridge), 2015 , 142, 3746-57	6.6	17
195	DNA modification study of major depressive disorder: beyond locus-by-locus comparisons. <i>Biological Psychiatry</i> , 2015 , 77, 246-255	7.9	49
194	Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. <i>American Journal of Human Genetics</i> , 2015 , 96, 283-94	11	161
193	Seasonality shows evidence for polygenic architecture and genetic correlation with schizophrenia and bipolar disorder. <i>Journal of Clinical Psychiatry</i> , 2015 , 76, 128-34	4.6	18
192	NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development. <i>Journal of Neuroscience</i> , 2014 , 34, 2921-30	6.6	53
191	Testing the role of circadian genes in conferring risk for psychiatric disorders. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2014 , 165B, 254-60	3.5	32
190	Large-scale genomics unveils the genetic architecture of psychiatric disorders. <i>Nature Neuroscience</i> , 2014 , 17, 782-90	25.5	269
189	Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. <i>American Journal of Human Genetics</i> , 2014 , 95, 535-52	11	411
188	Overlap of expression quantitative trait loci (eQTL) in human brain and blood. <i>BMC Medical Genomics</i> , 2014 , 7, 31	3.7	41
187	Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it?. <i>Biological Psychiatry</i> , 2014 , 76, 510-2	7.9	125
186	The contribution of genetic variants to disease depends on the ruler. <i>Nature Reviews Genetics</i> , 2014 , 15, 765-76	30.1	105
185	Genetic and environmental exposures constrain epigenetic drift over the human life course. <i>Genome Research</i> , 2014 , 24, 1725-33	9.7	123

184	Research review: Polygenic methods and their application to psychiatric traits. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2014 , 55, 1068-87	7.9	410
183	Genetic predisposition to schizophrenia associated with increased use of cannabis. <i>Molecular Psychiatry</i> , 2014 , 19, 1201-4	15.1	136
182	A comparative study of techniques for differential expression analysis on RNA-Seq data. <i>PLoS ONE</i> , 2014 , 9, e103207	3.7	152
181	Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. <i>Human Molecular Genetics</i> , 2014 , 23, 4710-20	5.6	73
180	Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. <i>Current Epidemiology Reports</i> , 2014 , 1, 220-227	2.9	43
179	Response to 'Predicting the diagnosis of autism spectrum disorder using gene pathway analysis'. <i>Molecular Psychiatry</i> , 2014 , 19, 859-61	15.1	14
178	The association between family history of mental disorders and general cognitive ability. <i>Translational Psychiatry</i> , 2014 , 4, e412	8.6	16
177	Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. <i>PLoS Genetics</i> , 2014 , 10, e1004269	6	236
176	Applying polygenic risk scores to postpartum depression. <i>Archives of Womend Mental Health</i> , 2014 , 17, 519-28	5	49
175	A recessive genetic model and runs of homozygosity in major depressive disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2014 , 165B, 157-66	3.5	19
174	Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. <i>Genome Biology</i> , 2014 , 15, R56	18.3	73
173	Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. <i>Addiction Biology</i> , 2014 , 19, 111-21	4.6	59
172	Explaining additional genetic variation in complex traits. <i>Trends in Genetics</i> , 2014 , 30, 124-32	8.5	110
171	Future Directions in Genetics of Psychiatric Disorders 2014 , 311-337		O
170	The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. <i>Molecular Psychiatry</i> , 2013 , 18, 595-606	15.1	338
169	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. <i>Nature Genetics</i> , 2013 , 45, 1150-9	36.3	1153
168	Author reply to A commentary on Pitfalls of predicting complex traits from SNPs. <i>Nature Reviews Genetics</i> , 2013 , 14, 894	30.1	4
167	A genome-wide association study of sleep habits and insomnia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2013 , 162B, 439-51	3.5	81

(2013-2013)

166	Where GWAS and epidemiology meet: opportunities for the simultaneous study of genetic and environmental risk factors in schizophrenia. <i>Schizophrenia Bulletin</i> , 2013 , 39, 955-9	1.3	59
165	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. <i>Nature Genetics</i> , 2013 , 45, 984-94	36.3	1628
164	Protocol for a collaborative meta-analysis of 5-HTTLPR, stress, and depression. <i>BMC Psychiatry</i> , 2013 , 13, 304	4.2	33
163	Estimation and partition of heritability in human populations using whole-genome analysis methods. <i>Annual Review of Genetics</i> , 2013 , 47, 75-95	14.5	110
162	A genome wide survey supports the involvement of large copy number variants in schizophrenia with and without intellectual disability. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2013 , 162B, 847-54	3.5	13
161	Are surgical trials with negative results being interpreted correctly?. <i>Journal of the American College of Surgeons</i> , 2013 , 216, 158-66	4.4	12
160	Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis. <i>Human Molecular Genetics</i> , 2013 , 22, 832-41	5.6	147
159	Estimation of SNP heritability from dense genotype data. <i>American Journal of Human Genetics</i> , 2013 , 93, 1151-5	11	85
158	Additive genetic variation in schizophrenia risk is shared by populations of African and European descent. <i>American Journal of Human Genetics</i> , 2013 , 93, 463-70	11	55
157	A mega-analysis of genome-wide association studies for major depressive disorder. <i>Molecular Psychiatry</i> , 2013 , 18, 497-511	15.1	853
156	The heritability of delusional-like experiences. Acta Psychiatrica Scandinavica, 2013, 127, 48-52	6.5	3
155	Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. <i>Nature Genetics</i> , 2013 , 45, 234-8	36.3	64
154	Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. <i>Lancet, The</i> , 2013 , 381, 1371-1379	40	2112
153	Pitfalls of predicting complex traits from SNPs. <i>Nature Reviews Genetics</i> , 2013 , 14, 507-15	30.1	457
152	Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2013 , 162B, 419-430	3.5	125
151	Research review: the role of cytokines in depression in adolescents: a systematic review. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2013 , 54, 816-35	7.9	65
150	ANKK1, TTC12, and NCAM1 polymorphisms and heroin dependence: importance of considering drug exposure. <i>JAMA Psychiatry</i> , 2013 , 70, 325-33	14.5	45
149	Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. <i>PLoS Genetics</i> , 2013 , 9, e1003864	6	189

148	Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. <i>Translational Psychiatry</i> , 2013 , 3, e269	8.6	78
147	Assumptions and properties of limiting pathway models for analysis of epistasis in complex traits. <i>PLoS ONE</i> , 2013 , 8, e68913	3.7	11
146	Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. <i>PLoS ONE</i> , 2013 , 8, e65636	3.7	113
145	Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy. <i>PLoS ONE</i> , 2013 , 8, e71494	3.7	30
144	A genome-wide meta-analysis of association studies of Cloninger's Temperament Scales. <i>Translational Psychiatry</i> , 2012 , 2, e116	8.6	85
143	Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. <i>Nature Genetics</i> , 2012 , 44, 247-50	36.3	471
142	Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. <i>Molecular Psychiatry</i> , 2012 , 17, 474-85	15.1	108
141	Don't give up on GWAS. <i>Molecular Psychiatry</i> , 2012 , 17, 2-3	15.1	46
140	Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. <i>Frontiers in Genetics</i> , 2012 , 3, 118	4.5	140
139	Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes. <i>European Journal of Human Genetics</i> , 2012 , 20, 1078-84	5.3	22
138	A better coefficient of determination for genetic profile analysis. <i>Genetic Epidemiology</i> , 2012 , 36, 214-2	42.6	158
137	Appraisals of Stressful Life Events as a Genetically-Linked Mechanism in the StressDepression Relationship. <i>Cognitive Therapy and Research</i> , 2012 , 36, 338-347	2.7	18
136	Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. <i>Molecular Psychiatry</i> , 2012 , 17, 36-48	15.1	335
135	Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. <i>Translational Psychiatry</i> , 2012 , 2, e102	8.6	137
134	Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes. <i>European Journal of Human Genetics</i> , 2012 , 20, 668-74	5.3	51
133	Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. <i>Translational Psychiatry</i> , 2012 , 2, e184	8.6	62
132	Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. <i>Molecular Psychiatry</i> , 2012 , 17, 1116-29	15.1	93
131	Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. <i>Bioinformatics</i> , 2012 , 28, 2540-2	7.2	414

(2010-2012)

130	Genetic co-morbidity between neuroticism, anxiety/depression and somatic distress in a population sample of adolescent and young adult twins. <i>Psychological Medicine</i> , 2012 , 42, 1249-60	6.9	64
129	Unraveling the genetic etiology of adult antisocial behavior: a genome-wide association study. <i>PLoS ONE</i> , 2012 , 7, e45086	3.7	63
128	Identification of tag haplotypes for 5HTTLPR for different genome-wide SNP platforms. <i>Molecular Psychiatry</i> , 2011 , 16, 1073-5	15.1	17
127	Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. <i>PLoS ONE</i> , 2011 , 6, e27964	3.7	37
126	Association between ORMDL3, IL1RL1 and a deletion on chromosome 17q21 with asthma risk in Australia. <i>European Journal of Human Genetics</i> , 2011 , 19, 458-64	5.3	92
125	Genetic risk profiles for depression and anxiety in adult and elderly cohorts. <i>Molecular Psychiatry</i> , 2011 , 16, 773-83	15.1	116
124	Glutamate cysteine ligase (GCL) and self reported depression: an association study from the HUNT. Journal of Affective Disorders, 2011 , 131, 207-13	6.6	12
123	Estimating missing heritability for disease from genome-wide association studies. <i>American Journal of Human Genetics</i> , 2011 , 88, 294-305	11	737
122	A 3p26-3p25 genetic linkage finding for DSM-IV major depression in heavy smoking families. <i>American Journal of Psychiatry</i> , 2011 , 168, 848-52	11.9	33
121	The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. <i>Translational Psychiatry</i> , 2011 , 1, e50	8.6	83
120	Synthetic associations created by rare variants do not explain most GWAS results. <i>PLoS Biology</i> , 2011 , 9, e1000579	9.7	129
119	Sporadic cases are the norm for complex disease. European Journal of Human Genetics, 2010, 18, 1039-4	13 5.3	78
118	The genetic interpretation of area under the ROC curve in genomic profiling. <i>PLoS Genetics</i> , 2010 , 6, e1000864	6	239
117	Choosing the best tools for comparative analyses of texts. <i>International Journal of Corpus Linguistics</i> , 2010 , 15, 429-473	0.8	5
116	Genetic differences between five European populations. Human Heredity, 2010, 70, 141-9	1.1	24
115	A genome-wide association study of Cloninger's temperament scales: implications for the evolutionary genetics of personality. <i>Biological Psychology</i> , 2010 , 85, 306-17	3.2	128
114	Narrowing the boundaries of the genetic architecture of schizophrenia. <i>Schizophrenia Bulletin</i> , 2010 , 36, 14-23	1.3	86
113	Multi-locus models of genetic risk of disease. <i>Genome Medicine</i> , 2010 , 2, 10	14.4	54

112	Do 5HTTLPR and stress interact in risk for depression and suicidality? Item response analyses of a large sample. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 757-65	3.5	21
111	Comparing apples and oranges: equating the power of case-control and quantitative trait association studies. <i>Genetic Epidemiology</i> , 2010 , 34, 254-7	2.6	51
110	A versatile gene-based test for genome-wide association studies. <i>American Journal of Human Genetics</i> , 2010 , 87, 139-45	11	648
109	Phenotypic and discordant-monozygotic analyses of stress and perceived social support as antecedents to or sequelae of risk for depression. <i>Twin Research and Human Genetics</i> , 2009 , 12, 469-88	2.2	6
108	Twins in the World: The Legends They Inspire and the Lives That They LeadAlessandra Piontelli (2008). New York: Palgrave Macmillan, 272 pp, US\$26.95, ISBN-13: 978-0-230-60597-8 <i>Twin Research and Human Genetics</i> , 2009 , 12, 407-407	2.2	
107	Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. <i>Human Molecular Genetics</i> , 2009 , 18, 3525-31	5.6	237
106	Suggestive linkage on chromosome 2, 8, and 17 for lifetime major depression. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 352-8	3.5	17
105	Genetic and environmental influences on the co-morbidity between depression, panic disorder, agoraphobia, and social phobia: a twin study. <i>Depression and Anxiety</i> , 2009 , 26, 1004-11	8.4	74
104	Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. <i>Molecular Psychiatry</i> , 2009 , 14, 359-75	15.1	322
103	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. <i>Nature</i> , 2009 , 460, 748-52	50.4	3568
102	Accurate, Large-Scale Genotyping of 5HTTLPR and Flanking Single Nucleotide Polymorphisms in an Association Study of Depression, Anxiety, and Personality Measures. <i>Biological Psychiatry</i> , 2009 , 66, 468	3 7 78	93
101	Estimating Effects and Making Predictions from Genome-Wide Marker Data. <i>Statistical Science</i> , 2009 , 24,	2.4	105
100	Heritability in the genomics eraconcepts and misconceptions. <i>Nature Reviews Genetics</i> , 2008 , 9, 255-66	30.1	1155
99	A whole genome association study of neuroticism using DNA pooling. <i>Molecular Psychiatry</i> , 2008 , 13, 302-12	15.1	127
98	Prediction of individual genetic risk of complex disease. <i>Current Opinion in Genetics and Development</i> , 2008 , 18, 257-63	4.9	129
97	Emotionally Healthy Twins: A New Philosophy for Parenting Two Unique IndividualsJoan A. Friedman (2008). Da Capo Press, Life Long Books, 224 pp., US\$15.95, ISBN 13 978 0 7382 1087 2. <i>Twin Research and Human Genetics</i> , 2008 , 11, 241-242	2.2	
96	COPD education and cognitive behavioral therapy group treatment for clinically significant symptoms of depression and anxiety in COPD patients: a randomized controlled trial. <i>Psychological Medicine</i> , 2008 , 38, 385-96	6.9	145
95	Shared temperament risk factors for anorexia nervosa: a twin study. <i>Psychosomatic Medicine</i> , 2008 , 70, 239-44	3.7	70

(2005-2008)

94	Association study of candidate variants from brain-derived neurotrophic factor and dystrobrevin-binding protein 1 with neuroticism, anxiety, and depression. <i>Psychiatric Genetics</i> , 2008 , 18, 219-25	2.9	18
93	Genome-wide linkage analysis of multiple measures of neuroticism of 2 large cohorts from Australia and the Netherlands. <i>Archives of General Psychiatry</i> , 2008 , 65, 649-58		31
92	Association study of candidate variants of COMT with neuroticism, anxiety and depression. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 1314-8	3.5	44
91	Use of monozygotic twins to investigate the relationship between 5HTTLPR genotype, depression and stressful life events: an application of Item Response Theory. <i>Novartis Foundation Symposium</i> , 2008 , 293, 48-59; discussion 59-70		18
90	Prediction of individual genetic risk to disease from genome-wide association studies. <i>Genome Research</i> , 2007 , 17, 1520-8	9.7	436
89	Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder. <i>Biological Psychiatry</i> , 2007 , 61, 797-805	7.9	22
88	Association analysis of the chromosome 4p15-p16 candidate region for bipolar disorder and schizophrenia. <i>Molecular Psychiatry</i> , 2007 , 12, 1011-25	15.1	31
87	Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus. <i>British Journal of Cancer</i> , 2007 , 96, 1613-20	8.7	32
86	Anxiety and comorbid measures associated with PLXNA2. Archives of General Psychiatry, 2007, 64, 318	3-26	45
85	Genetic and phenotypic stability of measures of neuroticism over 22 years. <i>Twin Research and Human Genetics</i> , 2007 , 10, 695-702	2.2	61
84	Genes, Environment and Psychopathology: Understanding the Causes of Psychiatric and Substance Use DisordersKenneth S. Kendler and Carol A. Prescott (2006). New York: The Guildford Press, 412 pp, US\$45.00, ISBN-10: 1-59385-316-5 <i>Twin Research and Human Genetics</i> , 2007 , 10, 231-233	2.2	
83	Sex Differences in Symptoms of Depression in Unrelated Individuals and Opposite-Sex Twin and Sibling Pairs. <i>Twin Research and Human Genetics</i> , 2006 , 9, 632-636	2.2	20
82	Empirical Evaluation of the Genetic Similarity of Samples From Twin Registries in Australia and the Netherlands Using 359 STRP Markers. <i>Twin Research and Human Genetics</i> , 2006 , 9, 600-602	2.2	10
81	Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia. <i>Molecular Psychiatry</i> , 2006 , 11, 384-94	15.1	19
80	Sex differences in symptoms of depression in unrelated individuals and opposite-sex twin and sibling pairs. <i>Twin Research and Human Genetics</i> , 2006 , 9, 632-6	2.2	8
79	Empirical evaluation of the genetic similarity of samples from twin registries in Australia and the Netherlands using 359 STRP markers. <i>Twin Research and Human Genetics</i> , 2006 , 9, 600-2	2.2	6
78	Allele Frequencies and the r2 Measure of Linkage Disequilibrium: Impact on Design and Interpretation of Association Studies. <i>Twin Research and Human Genetics</i> , 2005 , 8, 87-94	2.2	276
77	Indivisible by Two: Lives of Extraordinary TwinsNancy L. Segal (2005). Harvard University Press. 280pp, \$US24.95, ISBN 0-674-01933-4 <i>Twin Research and Human Genetics</i> , 2005 , 8, 666-668	2.2	1

76	Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. <i>Molecular Psychiatry</i> , 2005 , 10, 470-8	15.1	84
75	Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. <i>Molecular Psychiatry</i> , 2005 , 10, 657-68, 616	15.1	149
74	Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. <i>Molecular Psychiatry</i> , 2005 , 10, 616-616	15.1	14
73	Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. <i>BMC Cancer</i> , 2005 , 5, 113	4.8	110
72	Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. <i>Twin Research and Human Genetics</i> , 2005 , 8, 87-94	2.2	46
71	Indivisible by Two: Lives of Extraordinary TwinsNancy L. Segal (2005). Harvard University Press. 280pp, \$US24.95, ISBN 0-674-01933-4 <i>Twin Research and Human Genetics</i> , 2005 , 8, 666-668	2.2	
70	Conventional multipoint nonparametric linkage analysis is not necessarily inherently biased. <i>American Journal of Human Genetics</i> , 2004 , 75, 718-20; author reply 723-7	11	4
69	Response to Amar J. Klar: The chromosome 1;11 translocation provides the best evidence supporting genetic etiology for schizophrenia and bipolar affective disorders. <i>Genetics</i> , 2003 , 163, 833-5; author reply 837-8	4	9
68	Genetics of schizophrenia and bipolar affective disorder: strategies to identify candidate genes. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2003 , 68, 383-94	3.9	5
67	A comparison of some simple methods to identify geographical areas with excess incidence of a rare disease such as childhood leukaemia. <i>Statistics in Medicine</i> , 1999 , 18, 1501-16	2.3	21
66	Population density and childhood leukaemia: results of the EUROCLUS Study. <i>European Journal of Cancer</i> , 1999 , 35, 439-44	7.5	38
65	Spatial clustering of childhood leukaemia: summary results from the EUROCLUS project. <i>British Journal of Cancer</i> , 1998 , 77, 818-24	8.7	53
64	Assigning pedigree beef performance records to contemporary groups taking account of within-herd calving patterns. <i>Animal Science</i> , 1997 , 65, 193-198		34
63	Aggregation of childhood leukemia in geographic areas of Greece. <i>Cancer Causes and Control</i> , 1997 , 8, 239-45	2.8	18
62	Use of MOET in Merino breeding programmes: a practical and economic appraisal. <i>Animal Science</i> , 1996 , 62, 241-254		4
61	MOET breeding schemes for wool sheep 1. Design alternatives. <i>Animal Science</i> , 1994 , 59, 71-86		11
60	MOET breeding schemes for wool sheep 2. Selection for adult fleece traits. <i>Animal Science</i> , 1994 , 59, 87-98		
59	Prediction of rates of inbreeding in populations undergoing index selection. <i>Theoretical and Applied Genetics</i> , 1994 , 87, 878-92	6	29

58	Calculation of prediction error variances using sparse matrix methods. <i>Journal of Animal Breeding and Genetics</i> , 1994 , 111, 102-9	2.9	9
57	Prediction of long-term contributions and inbreeding in populations undergoing mass selection. <i>Genetical Research</i> , 1993 , 62, 231-242	1.1	39
56	Prediction of asymptotic rates of response from selection on multiple traits using univariate and multivariate best linear unbiased predictors. <i>Animal Science</i> , 1993 , 57, 1-13		14
55	Accounting for Mutation Effects in the Additive Genetic Variance-Covariance Matrix and Its Inverse. <i>Biometrics</i> , 1990 , 46, 177	1.8	25
54	Prediction of rates of inbreeding in selected populations. <i>Genetical Research</i> , 1990 , 55, 41-54	1.1	133
53	Methods for predicting rates of inbreeding in selected populations. <i>Theoretical and Applied Genetics</i> , 1990 , 80, 503-12	6	32
52	Electronics in animal breeding. <i>Proceedings of the British Society of Animal Production (1972)</i> , 1990 , 1990, 107-107		
51	Asymptotic rates of response from index selection. <i>Animal Science</i> , 1989 , 49, 217-227		71
50	Breeding Value Estimation for Pigs in Closed Nucleus Herds. <i>Proceedings of the British Society of Animal Production (1972)</i> , 1988 , 1988, 12-12		1
49	Analysis of gestation length in American Simmental cattle. <i>Journal of Animal Science</i> , 1987 , 65, 970-4	0.7	11
48	Mapping common disease genes59-79		
47	Comparison of Genotypic and Phenotypic Correlations: Cheverud Conjecture in Humans		1
46	Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood		3
45	Genome-wide association study of suicide attempt in psychiatric disorders identifies association with major depression polygenic risk scores		2
44	Improved polygenic prediction by Bayesian multiple regression on summary statistics		2
43	Genome-wide analyses of behavioural traits biased by misreports and longitudinal changes		1
42	Regulatory variants explain much more heritability than coding variants across 11 common diseases		5
41	Using genotype data to distinguish pleiotropy from heterogeneity: deciphering coheritability in autoimmune and neuropsychiatric diseases		4

40	Commentary on "Limitations of GCTA as a solution to the missing heritability problem"	11
39	Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection	20
38	Genetic stratification of depression in UK Biobank suggests a subgroup linked to age of natural menopause	6
37	Widespread signatures of negative selection in the genetic architecture of human complex traits	7
36	A genetic investigation of sex bias in the prevalence of attention deficit hyperactivity disorder	3
35	Identification of 55,000 Replicated DNA Methylation QTL	14
34	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder	21
33	Causal associations between risk factors and common diseases inferred from GWAS summary data	6
32	Estimation of genetic correlation using linkage disequilibrium score regression and genomic restricted maximum likelihood	6
31	Integrative omics approach to identify the molecular architecture of inflammatory protein levels in healthy older adults	1
30	Examining sex-differentiated genetic effects across neuropsychiatric and behavioral traits	3
29	Comorbid chronic pain and depression: Shared risk factors and differential antidepressant effectiveness	1
28	Genomic and phenomic insights from an atlas of genetic effects on DNA methylation	7
27	A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts	8
26	Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals	3
25	Dissecting the shared genetic architecture of suicide attempt, psychiatric disorders and known risk factors	2
24	GWAS on family history of Alzheimer∃ disease	2
23	Genome-wide gene-environment analyses of depression and reported lifetime traumatic experiences in UK Biobank	9

22	Improved prediction of chronological age from DNA methylation limits it as a biomarker of ageing	6
21	Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model	3
20	Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell counts and epigenetic ageing	1
19	Evidence of causal effect of major depression on alcohol dependence: Findings from the Psychiatric Genomics Consortium	4
18	Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions	8
17	OSCA: a tool for omic-data-based complex trait analysis	7
16	Bayesian reassessment of the epigenetic architecture of complex traits	2
15	Genetic Consequences of Social Stratification in Great Britain	10
14	Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank	1
13	Genome wide meta-analysis identifies genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders	10
12	Conditional GWAS analysis identifies putative disorder-specific SNPs for psychiatric disorders	6
11	A resource-efficient tool for mixed model association analysis of large-scale data	10
10	The Australian Genetics of Depression Study: Study Description and Sample Characteristics	5
9	Bayesian analysis of GWAS summary data reveals differential signatures of natural selection across human complex traits and functional genomic categories	8
8	Cross-disorder GWAS meta-analysis for Attention Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Obsessive Compulsive Disorder, and Tourette Syndrome	2
7	Genome-wide association study of gastrointestinal disorders reinforces the link between the digestive tract and the nervous system	2
6	Genetic Association Study of Childhood Aggression across raters, instruments and age	4
5	Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration	2

4	DEAR-O: Differential Expression Analysis based on RNA-seq data - Online	1
3	GWAS of epigenetic ageing rates in blood reveals a critical role forTERT	1
2	Age at first birth in women is genetically associated with increased risk of schizophrenia	1
1	Genome-wide study of DNA methylation in Amyotrophic Lateral Sclerosis identifies differentially methylated loci and implicates metabolic, inflammatory and cholesterol pathways	1