
Sundar Vallam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1158926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longshore sediment transport rate from the field measured wave and sediment characteristics along the coast of Karaikal, India. ISH Journal of Hydraulic Engineering, 2023, 29, 557-568.	1.1	2
2	Hydrodynamic characteristics of vertical and quadrant face pile supported breakwater under oblique waves. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2022, 236, 62-73.	0.3	1
3	Wave Energy Convertors. Ocean Engineering & Oceanography, 2022, , 19-57.	0.1	ο
4	Hydrodynamic Performance of an Array of OWC Devices Integrated with Breakwater. Ocean Engineering & Oceanography, 2022, , 323-353.	0.1	0
5	Very severe cyclonic storm impacts to shoreline and beach profiles along the Karaikal coast of India. ISH Journal of Hydraulic Engineering, 2022, 28, 439-448.	1.1	3
6	Tidal inlet morphodynamics through numerical prediction and measurements. Marine Georesources and Geotechnology, 2022, 40, 1316-1327.	1.2	2
7	Hydrodynamic Characteristics of Concave Front Pile-Supported Breakwaters with a Tubular Wave Screen. Journal of Waterway, Port, Coastal and Ocean Engineering, 2022, 148, .	0.5	2
8	Influence of horizontal eddy viscosity and bottom friction coefficients on morphodynamic evaluations. Journal of Hydro-Environment Research, 2022, 40, 102-115.	1.0	5
9	Submerged Geosynthetic Reef as Shore Protection Measure for Islands. Journal of Marine Science and Application, 2022, 21, 128-139.	0.7	0
10	Hydrodynamic performance of concave front pile-supported breakwaters integrated with a louver wave screen. Ocean Engineering, 2022, 254, 111394.	1.9	3
11	A comprehensive review on structural tsunami countermeasures. Natural Hazards, 2022, 113, 1419-1449.	1.6	11
12	Development of Extreme Wave Maps for Indian Territorial Waters. , 2022, , .		0
13	Numerical Investigation on the Mean Flow Fields Generated by an Oscillating Sphere. , 2022, , .		Ο
14	Hydrodynamic Modelling of Storm Surge with Modified Wind Fields along the East Coast of India. Marine Geodesy, 2022, 45, 557-576.	0.9	3
15	Experimental study on the hydrodynamic performance of an oscillating water column with frontal plates. Ocean Engineering, 2022, 258, 111658.	1.9	1
16	Hydrodynamic performance characteristics of an oscillating water column device integrated with a pile breakwater. Journal of Ocean Engineering and Marine Energy, 2021, 7, 229-241.	0.9	8
17	Baseline Study on Microplastics in Indian Rivers under Different Anthropogenic Influences. Water (Switzerland), 2021, 13, 1648.	1.2	45
18	Three-dimensional direct numerical simulation of flow induced by an oscillating sphere close to a plane boundary. Physics of Fluids, 2021, 33, 097106.	1.6	4

#	Article	IF	CITATIONS
19	Hydrodynamic characteristics of curved front face pile-supported breakwaters in random waves. Applied Ocean Research, 2021, 117, 102922.	1.8	4
20	Design of a Minor Fishing Harbor in India with Special Reference to Training of the Mouth of River Chapora. Lecture Notes in Civil Engineering, 2021, , 65-77.	0.3	0
21	Shoreline changes due to construction of groyne field in north of Chennai Port, India. Environmental Monitoring and Assessment, 2021, 193, 830.	1.3	3
22	Hydrodynamic characteristics of curved and vertical front face pile-supported breakwaters in regular waves. Ocean Engineering, 2020, 216, 108105.	1.9	9
23	Transmission and Reflection Characteristics of Perforated Submerged Single and Multiple Artificial Reef Units. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	0.6	2
24	Hydrodynamic Performance of Pile Supported Breakwaters—A Review. , 2020, , 929-935.		0
25	Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls. Renewable Energy, 2019, 132, 142-156.	4.3	16
26	Phase field lattice Boltzmann model for air-water two phase flows. Physics of Fluids, 2019, 31, .	1.6	38
27	Numerical modeling of nonlinear sloshing of liquid in a container coupled with barge subjected to regular excitation. Journal of Hydrodynamics, 2019, 31, 999-1010.	1.3	6
28	Influence of Harbour Wall on Pressure Variation in an Oscillating Water Column. Lecture Notes in Civil Engineering, 2019, , 751-763.	0.3	3
29	Hydrodynamic characteristics of a submerged trapezoidal artificial reef unit. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2019, 233, 1226-1239.	0.3	3
30	Lattice Boltzmann simulation of free surface flow impact on a structure. Physical Review E, 2019, 99, 023308.	0.8	5
31	An Experimental Study on Wave Forces and Pressures on an Oscillating Water Column Under Random Waves. , 2019, , .		0
32	Estimation and Analysis of Extreme Maximum Wave Heights. Lecture Notes in Civil Engineering, 2019, , 723-732.	0.3	2
33	Coastal Engineering. Advanced Series on Ocean Engineering, 2019, , .	0.1	2
34	Coastal Protection Along Vulnerable Stretches Along the South Indian Peninsula. , 2018, , 1327-1354.		2
35	Effect of Harbor Walls on the Efficiency of an Oscillating Water Column. Journal of Waterway, Port, Coastal and Ocean Engineering, 2018, 144, 04017043.	0.5	2
36	Integrated Solution For Coastal Protection And Wave Energy Extraction. , 2018, , .		0

#	Article	IF	CITATIONS
37	Performance of an array of oscillating water column devices integrated with an offshore detached breakwater. Ocean Engineering, 2018, 163, 518-532.	1.9	51
38	Nonlinear wave interaction with curved front seawalls. Ocean Engineering, 2017, 140, 84-96.	1.9	9
39	Pressures and Forces on an Oscillating Water Column–Type Wave Energy Caisson Breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143, 04017020.	0.5	8
40	Estimation of extreme wind speeds and wave heights along the regional waters of India. Ocean Engineering, 2017, 146, 170-177.	1.9	7
41	Stability of micro-tidal inlets along coastlines dominated by littoral drift. Journal of Coastal Conservation, 2017, 21, 789-801.	0.7	4
42	Reassessment of tidal energy potential in India and a decision-making tool for tidal energy technology selection. The International Journal of Ocean and Climate Systems, 2017, 8, 85-97.	0.8	17
43	Integration of wave energy and other marine renewable energy sources with the needs of coastal societies. The International Journal of Ocean and Climate Systems, 2017, 8, 19-36.	0.8	33
44	Stability of a micro-tidal inlet using semi-numerical approach. The International Journal of Ocean and Climate Systems, 2017, 8, 113-125.	0.8	1
45	Assessment of reliability of extreme wave height prediction models. Natural Hazards and Earth System Sciences, 2017, 17, 409-421.	1.5	32
46	Shore protection for the coast of Mousuni Island in West Bengal, India. The International Journal of Ocean and Climate Systems, 2016, 7, 35-46.	0.8	2
47	Investigations into efficiency of vortex induced vibration hydro-kinetic energy device. Energy, 2016, 109, 224-235.	4.5	33
48	Assessment of wave energy potential and its harvesting approach along the Indian coast. Renewable Energy, 2016, 99, 398-409.	4.3	56
49	Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, 2016, 96, 341-353.	4.3	80
50	Numerical simulation of sloshing in a rectangular tank under combined horizontal, vertical and rotational oscillations. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2016, 230, 95-113.	0.3	3
51	Longshore Sediment Transport along the Coast of Kerala in Southwest India. Procedia Engineering, 2015, 116, 40-46.	1.2	21
52	Vortex-induced vibrations of elastically mounted circular cylinder at Re of the O(105). Journal of Fluids and Structures, 2015, 54, 503-521.	1.5	17
53	Investigation on the Cyclonic Seastate along Southeast Coast of India. Marine Geodesy, 2015, 38, 58-78.	0.9	2
54	Experimental Investigations on Wave Transmission at Submerged Breakwater with Smooth and Stepped Slopes. Procedia Engineering, 2015, 116, 713-719.	1.2	17

#	Article	IF	CITATIONS
55	Wave Forces on an Oscillating Water Column Device. Procedia Engineering, 2015, 116, 1019-1026.	1.2	28
56	Wave Power Absorption Capability of a Multi-Resonant Double Chamber Oscillating Water Column Device. Jurnal Teknologi (Sciences and Engineering), 2014, 66, .	0.3	1
57	Shoreline changes along the Northern coast of Chennai port, from field measurements. ISH Journal of Hydraulic Engineering, 2014, 20, 24-31.	1.1	11
58	A Load Cell for the Measurement of Slack Mooring Forces. Journal of the Institution of Engineers (India): Series C, 2014, 95, 193-205.	0.7	0
59	SENSITIVITY ANALYSIS OF RELATIONSHIP BETWEEN TSUNAMI DISASTER AND COASTAL EMBANKMENT STRUCTURE. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_43-I_48.	0.0	3
60	Asymptotic Analysis of Sloshing in a Rectangular Tank. The International Journal of Ocean and Climate Systems, 2014, 5, 89-103.	0.8	4
61	Pressures on the Crown Wall of Breakwater Formed by New Armor Block KOLOS due to Regular Waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2013, 139, 518-526.	0.5	0
62	A numerical study: liquid sloshing dynamics in a tank due to uncoupled sway, heave and roll ship motions. Journal of Naval Architecture and Marine Engineering, 2013, 10, 119-138.	0.9	1
63	Wind-Wave Characteristics and Climate Variability in the Indian Ocean Region Using Altimeter Data. Marine Geodesy, 2013, 36, 303-318.	0.9	41
64	MANNING'S 'n' FOR STAGGERED FLEXIBLE EMERGENT VEGETATION. Journal of Earthquake and Tsunami, 2013, 07, 1250029.	0.7	5
65	Artificial Reefs: A Review. The International Journal of Ocean and Climate Systems, 2013, 4, 117-124.	0.8	14
66	Wave Interaction with a Double Chamber Oscillating Water Column Device. The International Journal of Ocean and Climate Systems, 2013, 4, 21-39.	0.8	11
67	Wave Overtopping over Crown Walls and Run-up on Rubble Mound Breakwaters with Kolos Armour under Random Waves. The International Journal of Ocean and Climate Systems, 2013, 4, 125-132.	0.8	0
68	Performance of a perforated submerged semicircular breakwater due to non-breaking waves. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2012, 226, 36-50.	0.3	4
69	Review of the research on emerged and submerged semicircular breakwaters. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2012, 226, 397-409.	0.3	5
70	Empirical Equation for the Prediction of Run-Up Due to Random Waves on Beaches Fronted by Vegetation. Marine Geodesy, 2012, 35, 257-270.	0.9	0
71	Role of Vegetation on Beach Run-up due to Regular and Cnoidal Waves. Journal of Coastal Research, 2012, 278, 123-130.	0.1	10
72	Manning's â€~n' co-efficient for flexible emergent vegetation in tandem configuration. Journal of Hydro-Environment Research, 2012, 6, 51-62.	1.0	33

#	Article	IF	CITATIONS
73	Liquid sloshing dynamics in a barge carrying container subjected to random wave excitation. Journal of Naval Architecture and Marine Engineering, 2012, 9, 43-65.	0.9	5
74	Performance of flexible emergent vegetation in staggered configuration as a mitigation measure for extreme coastal disasters. Natural Hazards, 2012, 62, 531-550.	1.6	15
75	The effects of flexible vegetation on forces with a Keulegan-Carpenter number in relation to structures due to long waves. Journal of Marine Science and Application, 2012, 11, 24-33.	0.7	5
76	Effect of vegetation on run-up and wall pressures due to cnoidal waves. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 562-567.	0.7	11
77	Hydrodynamic Characteristics of Curved-Front Seawall Models Compared with Vertical Seawall under Regular Waves. Journal of Coastal Research, 2011, 277, 1103-1112.	0.1	22
78	Comparison between measured and simulated shoreline changes near the tip of Indian peninsula. Journal of Hydro-Environment Research, 2011, 5, 157-167.	1.0	12
79	Effect of the Tidal Currents at the Amphidromes on the Characteristics of an N-Wave-Type Tsunami. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2011, 225, 43-59.	0.3	1
80	Hydrodynamic characteristics of pile supported skirt breakwater models. Applied Ocean Research, 2011, 33, 12-22.	1.8	33
81	Simulation of Shoreline Evolution and Estimation of Alongshore Sediment Transport. , 2011, , .		1
82	Quantification of phase shift in the simulation of shallow water waves. International Journal for Numerical Methods in Fluids, 2010, 62, 1381-1410.	0.9	1
83	Breaking Wave Impact Pressure on a Vertical Wall. The International Journal of Ocean and Climate Systems, 2010, 1, 155-166.	0.8	12
84	Identification of Suitable Grid Size for Accurate Computation of Run-up Height. The International Journal of Ocean and Climate Systems, 2010, 1, 223-237.	0.8	0
85	Motion responses of barge carrying liquid tank. Ocean Engineering, 2010, 37, 935-946.	1.9	33
86	Pressures and forces due to directional waves on a vertical wall fronted by wave screens. Applied Ocean Research, 2010, 32, 1-10.	1.8	2
87	Dynamic pressures on curved front seawall models under random waves. Journal of Hydrodynamics, 2010, 22, 521-527.	1.3	4
88	Hydrodynamic Performance of Single- and Double-Wave Screens. Journal of Waterway, Port, Coastal and Ocean Engineering, 2010, 136, 59-65.	0.5	17
89	Identification of breaking events from the responses of a data buoy. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2010, 224, 127-139.	0.3	2
90	COMPARISON OF PRESSURES DUE TO RANDOM WAVES ON VERTICAL AND CURVED SEAWALLS. ISH Journal of Hydraulic Engineering, 2010, 16, 26-34.	1.1	3

#	Article	IF	CITATIONS
91	VELOCITY CALCULATION METHODS IN FINITE ELEMENT BASED MEL FORMULATION. Series on Quality, Reliability and Engineering Statistics, 2010, , 203-244.	0.2	2
92	Conceptual Design of OWC Wave Energy Converters Combined With Breakwater Structures. , 2010, , .		9
93	Regular Wave Measurements on a Submerged Semicircular Breakwater. Journal of Offshore Mechanics and Arctic Engineering, 2010, 132, .	0.6	10
94	Wave-induced sloshing pressure in a liquid tank under irregular waves. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2009, 223, 145-161.	0.3	6
95	WAVE ATTENUATION CHARACTERISTICS OF CHAMBERED BREAKWATER. ISH Journal of Hydraulic Engineering, 2009, 15, 50-68.	1.1	1
96	Experimental Investigation of Sloshing Dynamics Coupled With Barge Responses. , 2009, , .		0
97	Effect of perforations and rubble mound height on wave transformation characteristics of surface piercing semicircular breakwaters. Ocean Engineering, 2009, 36, 1182-1198.	1.9	24
98	Wave-Induced Pressures and Forces on Deck Slabs near the Free Surface. Journal of Waterway, Port, Coastal and Ocean Engineering, 2009, 135, 269-277.	0.5	8
99	CLASSIFICATION OF OCEAN WAVES FROM THE DATA BUOY MEASUREMENTS. , 2009, , 31-40.		0
100	GEOSYNTHETIC APPLICATION FOR COASTAL PROTECTION AT SHANKARPUR, WEST BENGAL, INDIA. , 2009, , .		7
101	ENERGY DISSIPATION BY WAVE SCREENS DUE TO OBLIQUE WAVE INCIDENCE. , 2009, , .		0
102	RUN-UP AND DYNAMIC PRESSURE ON VERTICAL AND CURVED SEAWALL MODELS DUE TO CNOIDAL WAVES. , 2009, , .		0
103	Experimental study of liquid sloshing dynamics in a barge carrying tank. Fluid Dynamics Research, 2008, 40, 427-458.	0.6	48
104	Hydrodynamic performance of a dual cylindrical caisson breakwater. Coastal Engineering, 2008, 55, 431-446.	1.7	31
105	Identification of modal parameters of a floating system from impulse motion. Ocean Engineering, 2008, 35, 1560-1564.	1.9	3
106	Detection of wave groups from the motion behaviour of a discus buoy. Journal of Hydro-Environment Research, 2008, 1, 195-205.	1.0	16
107	Nonlinear Response Characteristics of Discus Data Buoy Hull. , 2008, , .		0
108	Sloshing pressure variation in a barge carrying tank. Ships and Offshore Structures, 2008, 3, 185-203.	0.9	14

#	Article	IF	CITATIONS
109	Response Characteristics of a Discus Shaped Data Buoy in Nonlinear Waves. Coastal Engineering Journal, 2008, 50, 463-489.	0.7	3
110	Hydrodynamic Characteristics of Seaside Perforated Semicircular Breakwaters due to Random Waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2008, 134, 237-251.	0.5	12
111	Liquid Sloshing Dynamics in a Container Subjected to Coupled Mode Excitation. , 2008, , .		2
112	Interaction of Solitary Waves With a Group of Dual Porous Circular Cylinders. , 2008, , .		4
113	EXPERIMENTAL AND NUMERICAL STUDIES ON THE TSUNAMI WAVE CHARACTERISTICS. ISH Journal of Hydraulic Engineering, 2007, 13, 123-134.	1.1	0
114	Runup and Inundation along the Indian Peninsula, Including the Andaman Islands, due to Great Indian Ocean Tsunami. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 401-413.	0.5	19
115	Simulation of nonlinear free surface dispersive shallow water waves. Journal of Hydro-Environment Research, 2007, 1, 126-132.	1.0	4
116	Modeling of the Indian Ocean Tsunami. , 2007, , .		0
117	Interaction of regular waves with a group of dual porous circular cylinders. Applied Ocean Research, 2007, 29, 180-190.	1.8	69
118	Tsunami Wave Interaction with Data Buoys. Marine Geodesy, 2006, 29, 235-251.	0.9	4
119	Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation. Applied Ocean Research, 2006, 28, 19-32.	1.8	49
120	Simulation of 2-D nonlinear waves using finite element method with cubic spline approximation. Journal of Fluids and Structures, 2006, 22, 663-681.	1.5	39
121	NWF: Propagation of Tsunami and its Interaction with Continental Shelf and Vertical Wall. Marine Geodesy, 2006, 29, 201-221.	0.9	6
122	Laboratory Simulation and Analysis of Wave Groups. , 2006, , .		4
123	Shore Protection against Erosion Along Southwest Coast of India. , 2005, , 335.		0
124	Forces due to oblique waves on a submerged open moored cylinder in deep waters. Ocean Engineering, 2005, 32, 651-666.	1.9	6
125	Probability Distribution of Wave Forces on Pipelines Near a Sloping Boundary Parallel and Normal to Wave Direction. Coastal Engineering Journal, 2004, 46, 93-117.	0.7	2
126	Regular wave pressures and forces on submerged pipelines near a sloping boundary. Ocean Engineering, 2004, 31, 2295-2317.	1.9	3

#	Article	IF	CITATIONS
127	Studies on Model Caissons Embedded in Marine Clay for Coastal Protection Wall. , 2004, , .		0
128	WAVE TRANSMISSION THROUGH DOUBLE VERTICAL SCREEN BREAKWATERS. , 2004, , .		0
129	Current-induced scour around a vertical pile in cohesive soil. Ocean Engineering, 2003, 30, 893-920.	1.9	41
130	Measurement of scour in cohesive soils around a vertical pile-simplified instrumentation and regression analysis. IEEE Journal of Oceanic Engineering, 2003, 28, 106-116.	2.1	17
131	Hydrodynamic Performance Characteristics of Quadrant Front-Face Pile-Supported Breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 2003, 129, 22-33.	0.5	22
132	Hydrodynamic characteristics of moored floating pipe breakwaters in random waves. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2003, 217, 95-110.	0.3	5
133	Wave Damping by Single and Double Chamber Breakwaters. , 2003, , .		0
134	Hydrodynamic Characteristics of Submerged Impermeable and Seaside Perforated Semicircular Breakwaters. , 2002, , 401.		2
135	Sleeve forces on inclined cylinders due to long and short crested waves. Journal of Hydraulic Research/De Recherches Hydrauliques, 2002, 40, 275-287.	0.7	1
136	A simplified instrumentation for measuring scour in silty clay around a vertical pile. Applied Ocean Research, 2002, 24, 355-360.	1.8	6
137	Hydrodynamic pressures and forces on quadrant front face pile supported breakwater. Ocean Engineering, 2002, 29, 193-214.	1.9	32
138	Wave induced forces around buried pipelines. Ocean Engineering, 2002, 29, 533-544.	1.9	35
139	Dynamic pressures and forces exerted on impermeable and seaside perforated semicircular breakwaters due to regular waves. Ocean Engineering, 2002, 29, 1981-2004.	1.9	26
140	WAVE INDUCED PRESSURES ON PIPELINES NEAR A SLOPING BOUNDARY DUE TO RANDOM WAVES. , 2002, , .		1
141	Effect of Seaward Side Wave Screens on the Dynamic Pressures on a Vertical Wall. , 2002, , .		0
142	Wave Induced Pressures on Pipelines Near a Sloping Boundary Due to Regular Waves. , 2002, , .		0
143	FORCES EXERTED ON SEASIDE PERFORATED SEMICIRCULAR BREAKWATERS DUE TO REGULAR AND RANDOM WAVES. , 2002, , .		Ο
144	Standing wave pressures on walls. Ocean Engineering, 2001, 28, 439-455.	1.9	11

9

#	Article	IF	CITATIONS
145	Diffraction–radiation of multiple floating structures in directional waves. Ocean Engineering, 2001, 28, 201-234.	1.9	36
146	Dynamic pressures on inclined cylinders due to freak waves. Ocean Engineering, 1999, 26, 841-863.	1.9	10
147	Mooring forces and motion responses of pontoon-type floating breakwaters. Ocean Engineering, 1998, 25, 27-48.	1.9	122
148	Dynamic pressures and run-up on semicircular breakwaters due to random waves. Ocean Engineering, 1998, 25, 221-241.	1.9	13
149	Hydrodynamic coefficients for inclined cylinders. Ocean Engineering, 1998, 25, 277-294.	1.9	24
150	Directional spreading of waves in the nearshore zone. Ocean Engineering, 1998, 26, 161-188.	1.9	7
151	Wave forces and moments on an intake well. Ocean Engineering, 1998, 26, 363-380.	1.9	9
152	Velocity fields in coastal waters. Marine Structures, 1995, 8, 309-333.	1.6	1
153	Pressures and forces on inclined cylinders due to regular waves. Ocean Engineering, 1995, 22, 747-759.	1.9	9
154	Standing wave pressures due to regular and random waves on a vertical wall. Ocean Engineering, 1995, 22, 859-879.	1.9	18
155	The hydrodynamic behaviour of long floating structures in directional seas. Applied Ocean Research, 1995, 17, 233-243.	1.8	37
156	Reflection characteristics of permeable seawalls. Coastal Engineering, 1994, 23, 135-150.	1.7	55
157	Asymmetries in waves and velocities in a groin field. Ocean Engineering, 1994, 21, 467-487.	1.9	1
158	Flume confinement effect on wave-induced dynamic pressures on twin-tandem cylinders. Ocean Engineering, 1993, 20, 313-337.	1.9	6
159	Wave climate in a groin field. Ocean Engineering, 1992, 19, 413-426.	1.9	1
160	Wave kinematics in a groin field-frequency domain analysis. Coastal Engineering, 1992, 18, 137-152.	1.7	4
161	Dynamic pressures on a large vertical cylinder due to random waves. Coastal Engineering, 1990, 14, 83-104.	1.7	5
162	Sediment budget for Paradip port, India. Ocean & Shoreline Management, 1990, 13, 69-81.	0.2	9

#	Article	IF	CITATIONS
163	Diffracted wave field and dynamic pressures around a vertical cylinder. Ocean Engineering, 1990, 17, 125-154.	1.9	9
164	Wave induced dynamic pressures on a vertical cylinder in the diffraction regime. Journal of Hydraulic Research/De Recherches Hydrauliques, 1989, 27, 637-650.	0.7	1
165	Application of double bounded probability density function for analysis of ocean waves. Ocean Engineering, 1989, 16, 193-200.	1.9	41
166	Dynamic pressure distribution on a cylinder due to wave diffraction. Ocean Engineering, 1989, 16, 343-353.	1.9	26
167	Wind climate for Madras Harbour, India. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 31, 323-333.	1.7	5
168	Effect of a base structure on the wave forces and pressures on a vertical cylinder. Ocean Engineering, 1988, 15, 359-371.	1.9	2
169	Distribution of Longshore Currents and Sediment Transport Rates in the Surf Zone Off Paradeep, India. , 1987, , .		0
170	Wave-power potential off the South-East coast of India. Energy, 1987, 12, 171-175.	4.5	3
171	Studies on the effect of wave steepness on wave force coefficient for elliptical caissons. Ocean Engineering, 1986, 13, 321-326.	1.9	0
172	Wave characteristics off the South East Coast of India. Ocean Engineering, 1986, 13, 327-338.	1.9	13
173	Wave forces on large offshore pipelines. Ocean Engineering, 1985, 12, 99-115.	1.9	11
174	Studies on wave-subsea pipeline interaction. Ocean Engineering, 1984, 11, 655-662.	1.9	2
175	Estimation of wave power potential along the Indian coastline. Energy, 1982, 7, 839-845.	4.5	8
176	Performance assessment of porous baffle on liquid sloshing dynamics in a barge carrying liquid tank. Ships and Offshore Structures, 0, , 1-14.	0.9	3
177	Sustainable hard and soft measures for coastal protection – Case studies along the Indian Coast. Marine Georesources and Geotechnology, 0, , 1-31.	1.2	2
178	Analysis of shoreline change between inlets along the coast of Chennai, India. Marine Georesources and Geotechnology, 0, , 1-10.	1.2	11
179	CONGREGATION OF PARTICLES ON A PLANE BOUNDARY DUE TO THE FLOW INDUCED BY AN OSCILLATING SPHERE. Physics of Fluids, 0, , .	1.6	0