Kersti Lilleväli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11588200/publications.pdf

Version: 2024-02-01

471509 526287 28 797 17 27 citations h-index g-index papers 29 29 29 1547 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Lipopolysaccharide-Induced Strain-Specific Differences in Neuroinflammation and MHC-I Pathway Regulation in the Brains of Bl6 and 129Sv Mice. Cells, 2022, 11, 1032.	4.1	4
2	Alternative Promoter Use Governs the Expression of IgLON Cell Adhesion Molecules in Histogenetic Fields of the Embryonic Mouse Brain. International Journal of Molecular Sciences, 2021, 22, 6955.	4.1	33
3	High-Fat Diet Induces Pre-Diabetes and Distinct Sex-Specific Metabolic Alterations in Negr1-Deficient Mice. Biomedicines, 2021, 9, 1148.	3.2	5
4	Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system. Pharmacology Biochemistry and Behavior, 2020, 198, 173017.	2.9	6
5	Genome sequencing identifies a homozygous inversion disrupting <i>QDPR</i> as a cause for dihydropteridine reductase deficiency. Molecular Genetics & Enomic Medicine, 2020, 8, e1154.	1.2	8
6	Treatment With Lipopolysaccharide Induces Distinct Changes in Metabolite Profile and Body Weight in 129Sv and Bl6 Mouse Strains. Frontiers in Pharmacology, 2020, 11, 371.	3. 5	12
7	Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Scientific Reports, 2019, 9, 5457.	3.3	33
8	Differences of Microglia in the Brain and the Spinal Cord. Frontiers in Cellular Neuroscience, 2019, 13, 504.	3.7	30
9	The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Research Bulletin, 2018, 140, 5-18.	3.0	20
10	Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Frontiers in Molecular Neuroscience, 2018, 11, 30.	2.9	36
11	Promoter-Specific Expression and Genomic Structure of IgLON Family Genes in Mouse. Frontiers in Neuroscience, 2017, 11, 38.	2.8	27
12	Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS ONE, 2017, 12, e0172825.	2.5	4
13	Gene expression patterns and environmental enrichment-induced effects in the hippocampi of mice suggest importance of Lsamp in plasticity. Frontiers in Neuroscience, 2015, 9, 205.	2.8	15
14	GDNF Overexpression from the Native Locus Reveals its Role in the Nigrostriatal Dopaminergic System Function. PLoS Genetics, 2015, 11, e1005710.	3.5	96
15	Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain. Brain Structure and Function, 2015, 220, 1381-1393.	2.3	32
16	Subdomain-Mediated Axon-Axon Signaling and Chemoattraction Cooperate to Regulate Afferent Innervation of the Lateral Habenula. Neuron, 2014, 83, 372-387.	8.1	46
17	Initiation and developmental dynamics of <i>Wfs1</i> expression in the context of neural differentiation and ER stress in mouse forebrain. International Journal of Developmental Neuroscience, 2014, 35, 80-88.	1.6	17
18	Trib3 Is Developmentally and Nutritionally Regulated in the Brain but Is Dispensable for Spatial Memory, Fear Conditioning and Sensing of Amino Acid-Imbalanced Diet. PLoS ONE, 2014, 9, e94691.	2.5	9

Kersti Lillevä

#	Article	IF	CITATION
19	The Embryonic Transcriptome of the Red-Eared Slider Turtle (Trachemys scripta). PLoS ONE, 2013, 8, e66357.	2.5	19
20	Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos. Hearing Research, 2012, 283, 151-161.	2.0	20
21	Deletion of the Lsamp gene lowers sensitivity to stressful environmental manipulations in mice. Behavioural Brain Research, 2012, 228, 74-81.	2.2	23
22	<i>Gata2</i> is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Developmental Dynamics, 2010, 239, 2452-2469.	1.8	59
23	Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences. Behavioural Brain Research, 2010, 207, 182-195.	2.2	11
24	<i>Gata2</i> is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development (Cambridge), 2009, 136, 253-262.	2.5	92
25	Characterization of MYG1 gene and protein: subcellular distribution and function. Biology of the Cell, 2009, 101, 361-377.	2.0	16
26	Comparative analysis of Gata 3 and Gata 2 expression during chicken inner ear development. Developmental Dynamics, 2007, 236, 306-313.	1.8	13
27	Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mechanisms of Development, 2006, 123, 415-429.	1.7	57
28	Partially overlapping expression of Gata2 and Gata3 during inner ear development. Developmental Dynamics, 2004, 231, 775-781.	1.8	52