James J Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11588145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing seasonal and biological indices of juvenile Chinook Salmon for freshwater decision triggers that increase ocean survival. Freshwater Science, 2022, 41, 253-269.	1.8	3
2	Targeting river operations to the critical thermal window of fish incubation: Model and case study on Sacramento River winterâ€run Chinook salmon. River Research and Applications, 2022, 38, 895-905.	1.7	4
3	Role of carryover effects in conservation of wild Pacific salmon migrating regulated rivers. Ecosphere, 2021, 12, e03618.	2.2	11
4	Applying the mean free-path length model to juvenile Chinook salmon migrating in the Sacramento River, California. Environmental Biology of Fishes, 2020, 103, 1603-1617.	1.0	1
5	Step-patterned survivorship curves: Mortality and loss of equilibrium responses to high temperature and food restriction in juvenile rainbow trout (Oncorhynchus mykiss). PLoS ONE, 2020, 15, e0233699.	2.5	6
6	Modeling Impacts of Hunting on Control of an Insular Feral Cat Population. Pacific Science, 2018, 72, 57-67.	0.6	6
7	Conservation planning for freshwater–marine carryover effects on Chinook salmon survival. Ecology and Evolution, 2018, 8, 319-332.	1.9	27
8	The relationship of mammal survivorship and body mass modeled by metabolic and vitality theories. Population Ecology, 2018, 60, 111-125.	1.2	4
9	Mutations, Cancer and the Telomere Length Paradox. Trends in Cancer, 2017, 3, 253-258.	7.4	101
10	Insights into mortality patterns and causes of death through a process point of view model. Biogerontology, 2017, 18, 149-170.	3.9	5
11	Home Range Estimates of Feral Cats (Felis catus) on Rota Island and Determining Asymptotic Convergence. Pacific Science, 2016, 70, 323-331.	0.6	10
12	Estimating behavior in a black box: how coastal oceanographic dynamics influence yearling Chinook salmon marine growth and migration behaviors. Environmental Biology of Fishes, 2016, 99, 671-686.	1.0	8
13	Quantifying Intrinsic and Extrinsic Contributions to Human Longevity: Application of a Two-Process Vitality Model to the Human Mortality Database. Demography, 2016, 53, 2105-2119.	2.5	7
14	A Twin Protection Effect? Explaining Twin Survival Advantages with a Two-Process Mortality Model. PLoS ONE, 2016, 11, e0154774.	2.5	11
15	The Strehler–Mildvan correlation from the perspective of a two-process vitality model. Population Studies, 2015, 69, 91-104.	2.1	14
16	Fish navigation of large dams emerges from their modulation of flow field experience. Proceedings of the United States of America, 2014, 111, 5277-5282.	7.1	80
17	Effects of avoidance behaviour on downstream fish passage through areas of accelerating flow when light and dark. Animal Behaviour, 2014, 92, 101-109.	1.9	46
18	Mortality Increase in Late-Middle and Early-Old Age: Heterogeneity in Death Processes as a New Explanation. Demography, 2013, 50, 1563-1591.	2.5	25

JAMES J ANDERSON

#	Article	IF	CITATIONS
19	Environmental and geospatial factors drive juvenile Chinook salmon distribution during early ocean migration. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1167-1177.	1.4	29
20	Resource competition induces heterogeneity and can increase cohort survivorship: selection-event duration matters. Oecologia, 2013, 173, 1321-1331.	2.0	5
21	Sensitivity of salmonid freshwater life history in western <scp>US</scp> streams to future climate conditions. Global Change Biology, 2013, 19, 2547-2556.	9.5	22
22	Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecological Modelling, 2013, 264, 83-97.	2.5	87
23	Effects of Decelerating and Accelerating Flows on Juvenile Salmonid Behavior. Transactions of the American Fisheries Society, 2012, 141, 357-364.	1.4	40
24	Quantifying behaviour of migratory fish: Application of signal detection theory to fisheries engineering. Ecological Engineering, 2012, 41, 22-31.	3.6	17
25	An investigation of the geomagnetic imprinting hypothesis for salmon. Fisheries Oceanography, 2012, 21, 170-181.	1.7	26
26	Ratio―and Predatorâ€Dependent Functional Forms for Predators Optimally Foraging in Patches. American Naturalist, 2010, 175, 240-249.	2.1	14
27	The vitality model: A way to understand population survival and demographic heterogeneity. Theoretical Population Biology, 2009, 76, 118-131.	1.1	57
28	Continuous models of population-level heterogeneity inform analysis of animal dispersal and migration. Ecology, 2009, 90, 2233-2242.	3.2	20
29	Oceanic, riverine, and genetic influences on spring chinook salmon migration timing. Ecological Applications, 2009, 19, 1989-2003.	3.8	38
30	Comprehensive passage (COMPASS) model: a model of downstream migration and survival of juvenile salmonids through a hydropower system. Hydrobiologia, 2008, 609, 289-300.	2.0	25
31	Linking Growth, Survival, and Heterogeneity through Vitality. American Naturalist, 2008, 171, E20-E43.	2.1	16
32	Effects of Water Temperature and Flow on Adult Salmon Migration Swim Speed and Delay. Transactions of the American Fisheries Society, 2006, 135, 188-199.	1.4	57
33	Historical Population Structure of Central Valley Steelhead and its Alteration by Dams. San Francisco Estuary and Watershed Science, 2006, 4, .	0.4	32
34	Forecasting 3-D fish movement behavior using a Eulerian–Lagrangian–agent method (ELAM). Ecological Modelling, 2006, 192, 197-223.	2.5	143
35	Mean free-path length theory of predator–prey interactions: Application to juvenile salmon migration. Ecological Modelling, 2005, 186, 196-211.	2.5	43
36	A statistical model for in-season forecasts of sockeye salmon (Oncorhynchus nerka) returns to the Bristol Bay districts of Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1665-1680.	1.4	14

JAMES J ANDERSON

#	Article	IF	CITATIONS
37	Contaminants as viral cofactors: assessing indirect population effects. Aquatic Toxicology, 2005, 71, 13-23.	4.0	17
38	A parameter estimation routine for the vitality-based survival model. Ecological Modelling, 2003, 166, 287-294.	2.5	19
39	AN AGENTâ€BASED EVENT DRIVEN FORAGING MODEL. Natural Resource Modelling, 2002, 15, 55-82.	2.0	21
40	Effect of spawning day and temperature on salmon emergence: interpretations of a growth model for Methow River chinook. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 943-949.	1.4	39
41	Modeling juvenile salmon migration using A simple markov chain. Journal of Agricultural, Biological, and Environmental Statistics, 2001, 6, 80-88.	1.4	13
42	A VITALITY-BASED MODEL RELATING STRESSORS AND ENVIRONMENTAL PROPERTIES TO ORGANISM SURVIVAL. Ecological Monographs, 2000, 70, 445-470.	5.4	45
43	A multiple-reach model describing the migratory behavior of Snake River yearling chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 658-667.	1.4	16
44	A Model of the Travel Time of Migrating Juvenile Salmon, with an Application to Snake River Spring Chinook Salmon. North American Journal of Fisheries Management, 1997, 17, 93-100.	1.0	32
45	Modelling the Growth of Salmonid Embryos. Journal of Theoretical Biology, 1997, 189, 297-306.	1.7	21
46	Response of Juvenile Coho and Chinook Salmon to Strobe and Mercury Vapor Lights. North American Journal of Fisheries Management, 1992, 12, 684-692.	1.0	54
47	Some physical and chemical properties of the Gulf of Corinth. Estuarine and Coastal Marine Science, 1973, 1, 195-202.	0.9	7
48	Deep water renewal in Saanich Inlet, an intermittently anoxic basin. Estuarine and Coastal Marine Science, 1973, 1, 1-10.	0.9	156
49	A Mathematical and Conceptual Framework for Ecohydraulics. , 0, , 205-224.		7