James J Anderson

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11588145/publications.pdf
Version: 2024-02-01

Assessing seasonal and biological indices of juvenile Chinook Salmon for freshwater decisio
triggers that increase ocean survival. Freshwater Science, 2022, 41, 253-269.

Targeting river operations to the critical thermal window of fish incubation: Model and case study on Sacramento River winterâ€ ${ }^{\prime}$ un Chinook salmon. River Research and Applications, 2022, 38, 895-905.

Role of carryover effects in conservation of wild Pacific salmon migrating regulated rivers. Ecosphere, 2021, 12, e03618.

Applying the mean free-path length model to juvenile Chinook salmon migrating in the Sacramento River, California. Environmental Biology of Fishes, 2020, 103, 1603-1617.

Step-patterned survivorship curves: Mortality and loss of equilibrium responses to high temperature
and food restriction in juvenile rainbow trout (Oncorhynchus mykiss). PLoS ONE, 2020, 15, e0233699.
2.5

Modeling Impacts of Hunting on Control of an Insular Feral Cat Population. Pacific Science, 2018, 72,
57-67.

Conservation planning for freshwaterâ€"marine carryover effects on Chinook salmon survival.
$7 \quad$ Ecology and Evolution, 2018, 8, 319-332.

The relationship of mammal survivorship and body mass modeled by metabolic and vitality theories.
Population Ecology, 2018, 60, 111-125.

9 Mutations, Cancer and the Telomere Length Paradox. Trends in Cancer, 2017, 3, 253-258.

Insights into mortality patterns and causes of death through a process point of view model.
Biogerontology, 2017, 18, 149-170.

Home Range Estimates of Feral Cats (Felis catus) on Rota Island and Determining Asymptotic
Convergence. Pacific Science, 2016, 70, 323-331.

Estimating behavior in a black box: how coastal oceanographic dynamics influence yearling Chinook salmon marine growth and migration behaviors. Environmental Biology of Fishes, 2016, 99, 671-686.

Quantifying Intrinsic and Extrinsic Contributions to Human Longevity: Application of a Two-Process Vitality Model to the Human Mortality Database. Demography, 2016, 53, 2105-2119.

A Twin Protection Effect? Explaining Twin Survival Advantages with a Two-Process Mortality Model. PLoS ONE, 2016, 11, e0154774.

The Strehlerâ€"Mildvan correlation from the perspective of a two-process vitality model. Population
Studies, 2015, 69, 91-104.

Fish navigation of large dams emerges from their modulation of flow field experience. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5277-5282.
7.1

80

Effects of avoidance behaviour on downstream fish passage through areas of accelerating flow when light and dark. Animal Behaviour, 2014, 92, 101-109.
1.9

46
19
20
Environmental and geospatial factors drive juvenile Chinook salmon distribution during early ocean migration. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1167-1177.
1.4

29

Resource competition induces heterogeneity and can increase cohort survivorship: selection-event duration matters. Oecologia, 2013, 173, 1321-1331.
2.0

5
$21 \begin{aligned} & \text { Sensitivity of salmonid freshwater life history in western <scp > US </scp > streams to future climate } \\ & \text { conditions. Global Change Biology, 2013, 19, } 2547-2556 \text {. }\end{aligned}$
$9.5 \quad 22$

Modeling climate change impacts on phenology and population dynamics of migratory marine species.
Ecological Modelling, 2013, 264, 83-97.
2.5

87

Effects of Decelerating and Accelerating Flows on Juvenile Salmonid Behavior. Transactions of the
American Fisheries Society, 2012, 141, 357-364.
1.4

Quantifying behaviour of migratory fish: Application of signal detection theory to fisheries engineering. Ecological Engineering, 2012, 41, 22-31.
3.6

17

25 \begin{tabular}{l}
An investigation of the geomagnetic imprinting hypothesis for salmon. Fisheries Oceanography, $201,170-181$.

21

Ratioấeand PredatorấĐependent Functional Forms for Predators Optimally Foraging in Patches,
American Naturalist, 2010, 175, 240-249.

$27 \quad$| The vitality model: A way to understand population survival and demographic heterogeneity. |
| :--- |
| Theoretical Population Biology, 2009, 76, 118-131. |

$28 \quad$| Continuous models of population-level heterogeneity inform analysis of animal dispersal and |
| :--- |
| migration. Ecology, 2009, 90, 2233-2242. |

29 Oceanic, riverine, and genetic influences on spring chinook salmon migration timing. Ecological

Applications, 2009, 19, 1989-2003.
\end{tabular}

30 Comprehensive passage (COMPASS) model: a model of downstream migration and survival of juvenile salmonids through a hydropower system. Hydrobiologia, 2008, 609, 289-300.

31 Linking Growth, Survival, and Heterogeneity through Vitality. American Naturalist, 2008, 171, E20-E43. 2.1

32 Effects of Water Temperature and Flow on Adult Salmon Migration Swim Speed and Delay. Transactions of the American Fisheries Society, 2006, 135, 188-199.
1.4

57

Historical Population Structure of Central Valley Steelhead and its Alteration by Dams. San Francisco
Estuary and Watershed Science, 2006, 4, .
$0.4 \quad 32$

Forecasting 3-D fish movement behavior using a Eulerianâ $€$ "Lagrangianâ€"agent method (ELAM).
Ecological Modelling, 2006, 192, 197-223.
2.5

143

Mean free-path length theory of predatorâ€"prey interactions: Application to juvenile salmon
migration. Ecological Modelling, 2005, 186, 196-211.
2.5 43

37 Contaminants as viral cofactors: assessing indirect population effects. Aquatic Toxicology, 2005, 71, 13-23.
39 AN AGENTâ€BASED EVENT DRIVEN FORAGING MODEL. Natural Resource Modelling, 2002, 15, 55-82.

41	Modeling juvenile salmon migration using A simple markov chain. Journal of Agricultural, Biological, and Environmental Statistics, 2001, 6, 80-88.	1.4	13
42	A VITALITY-BASED MODEL RELATING STRESSORS AND ENVIRONMENTAL PROPERTIES TO ORGANISM SURVIVAL. Ecological Monographs, 2000, 70, 445-470.	5.4	45
43	A multiple-reach model describing the migratory behavior of Snake River yearling chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 658-667.	1.4	16
44	A Model of the Travel Time of Migrating Juvenile Salmon, with an Application to Snake River Spring Chinook Salmon. North American Journal of Fisheries Management, 1997, 17, 93-100.	1.0	32
45	Modelling the Growth of Salmonid Embryos. Journal of Theoretical Biology, 1997, 189, 297-306.	1.7	21
46	Response of Juvenile Coho and Chinook Salmon to Strobe and Mercury Vapor Lights. North American Journal of Fisheries Management, 1992, 12, 684-692.	1.0	54
47	Some physical and chemical properties of the Gulf of Corinth. Estuarine and Coastal Marine Science, 1973, 1, 195-202.	0.9	7
48	Deep water renewal in Saanich Inlet, an intermittently anoxic basin. Estuarine and Coastal Marine Science, 1973, 1, 1-10.	0.9	156
49	A Mathematical and Conceptual Framework for Ecohydraulics. , 0, , 205-224.		7

