Masakiyo Fujimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11586968/publications.pdf

Version: 2024-02-01

1163117 1474206 15 274 8 9 citations g-index h-index papers 15 15 15 192 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low-Latency Real-Time Meeting Recognition and Understanding Using Distant Microphones and Omni-Directional Camera. IEEE Transactions on Audio Speech and Language Processing, 2012, 20, 499-513.	3.2	65
2	Strategies for distant speech recognitionin reverberant environments. Eurasip Journal on Advances in Signal Processing, 2015 , 2015 , .	1.7	46
3	Noise robust voice activity detection based on periodic to aperiodic component ratio. Speech Communication, 2010, 52, 41-60.	2.8	44
4	Dominance Based Integration of Spatial and Spectral Features for Speech Enhancement. IEEE Transactions on Audio Speech and Language Processing, 2013, 21, 2516-2531.	3.2	27
5	CENSREC-1-C: An evaluation framework for voice activity detection under noisy environments. Acoustical Science and Technology, 2009, 30, 363-371.	0.5	24
6	Speech recognition in living rooms: Integrated speech enhancement and recognition system based on spatial, spectral and temporal modeling of sounds. Computer Speech and Language, 2013, 27, 851-873.	4.3	17
7	Voice activity detection based on adjustable linear prediction and GARCH models. Speech Communication, 2008, 50, 476-486.	2.8	12
8	Frame-wise model re-estimation method based on Gaussian pruning with weight normalization for noise robust voice activity detection. Speech Communication, 2012, 54, 229-244.	2.8	10
9	LogMax observation model with MFCC-based spectral prior for reduction of highly nonstationary ambient noise. , $2012, , .$		8
10	Joint unsupervised learning of hidden Markov source models and source location models for multichannel source separation. , $2011,\ldots$		7
11	Reduction of highly nonstationary ambient noise by integrating spectral and locational characteristics of speech and noise for robust ASR. , 0 , , .		6
12	Multichannel source separation based on source location cue with log-spectral shaping by hidden Markov source model. , 0, , .		5
13	CENSREC-4: An evaluation framework for distant-talking speech recognition in reverberant environments. Acoustical Science and Technology, 2011, 32, 201-210.	0.5	2
14	Defeating reverberation: Advanced dereverberation and recognition techniques for hands-free speech recognition. , 2014 , , .		1
15	Hands-free speech recognition in real environments using microphone array and 2-levels MLLR adaptation as a front-end system for conversational TV. Acoustical Science and Technology, 2003, 24, 379-381.	0.5	0