
Richard N Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11586594/publications.pdf Version: 2024-02-01

ΡΙCHARD Ν ΠΑΥ

#	Article	IF	CITATIONS
1	Direct visualization by FRET-FLIM of a putative mechanosome complex involving Src, Pyk2 and MBD2 in living MLO-Y4 cells. PLoS ONE, 2021, 16, e0261660.	2.5	4
2	PIE-FLIM Measurements of Two Different FRET-Based Biosensor Activities in the Same Living Cells. Biophysical Journal, 2020, 118, 1820-1829.	0.5	8
3	A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo. Scientific Reports, 2019, 9, 8449.	3.3	32
4	Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods, 2017, 128, 95-104.	3.8	10
5	Imaging cell biology and physiology in vivo using intravital microscopy. Methods, 2017, 128, 1-2.	3.8	2
6	A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy. Nature Protocols, 2016, 11, 2066-2080.	12.0	26
7	SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity. Diabetes, 2016, 65, 3039-3052.	0.6	65
8	Imaging Lifetimes. Springer Series on Fluorescence, 2016, , 143-161.	0.8	0
9	Measuring Förster Resonance Energy Transfer Using Fluorescence Lifetime Imaging Microscopy. Microscopy Today, 2015, 23, 44-51.	0.3	3
10	A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy. American Journal of Physiology - Cell Physiology, 2015, 309, C724-C735.	4.6	28
11	Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments. Biophysical Journal, 2015, 109, 7-17.	0.5	15
12	Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods, 2014, 66, 200-207.	3.8	40
13	Measuring Protein Interactions Using Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy. Microscopy and Microanalysis, 2014, 20, 2130-2131.	0.4	0
14	Mechanical Loading in Osteocytes Induces Formation of a Src/Pyk2/MBD2 Complex That Suppresses Anabolic Gene Expression. PLoS ONE, 2014, 9, e97942.	2.5	17
15	A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods, 2013, 10, 407-409.	19.0	1,087
16	Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Journal of Biomedical Optics, 2013, 18, 025002.	2.6	14
17	Strengths and Weaknesses of Recently Engineered Red Fluorescent Proteins Evaluated in Live Cells Using Fluorescence Correlation Spectroscopy. International Journal of Molecular Sciences, 2013, 14, 20340-20358.	4.1	25
18	Monitoring Biosensor Activity in Living Cells with Fluorescence Lifetime Imaging Microscopy. International Journal of Molecular Sciences, 2012, 13, 14385-14400.	4.1	20

RICHARD N DAY

#	Article	IF	CITATIONS
19	Dynamic nuclear protein interactions investigated using fluorescence lifetime and fluorescence fluctuation spectroscopy. Proceedings of SPIE, 2012, , .	0.8	3
20	Monitoring Protein Interactions in Living Cells with Fluorescence Lifetime Imaging Microscopy. Methods in Enzymology, 2012, 504, 371-391.	1.0	59
21	Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. BioEssays, 2012, 34, 341-350.	2.5	99
22	Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nature Protocols, 2011, 6, 1324-1340.	12.0	207
23	An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching. PLoS ONE, 2011, 6, e17896.	2.5	228
24	Three-Color Spectral FRET Microscopy Localizes Three Interacting Proteins in Living Cells. Biophysical Journal, 2010, 99, 1274-1283.	0.5	59
25	Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. Journal of Biomedical Optics, 2009, 14, 054009.	2.6	54
26	The fluorescent protein palette: tools for cellular imaging. Chemical Society Reviews, 2009, 38, 2887.	38.1	711
27	Fluorescent protein tools for studying protein dynamics in living cells: a review. Journal of Biomedical Optics, 2008, 13, 031202.	2.6	60
28	Characterization of an improved donor fluorescent protein for FoÌrster resonance energy transfer microscopy. Journal of Biomedical Optics, 2008, 13, 031203.	2.6	76
29	Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. Journal of Microscopy, 2007, 228, 139-152.	1.8	72
30	Molecular Imaging, FRET Microscopy and Spectroscopy. Journal of Biomedical Optics, 2006, 11, 069901.	2.6	20
31	Monitoring dynamic protein interactions with photoquenching FRET. Nature Methods, 2006, 3, 519-524.	19.0	89
32	Dynamic Interactions between Pit-1 and C/EBPα in the Pituitary Cell Nucleus. Molecular and Cellular Biology, 2006, 26, 8087-8098.	2.3	11
33	Functional interactions with Pit-1 reorganize co-repressor complexes in the living cell nucleus. Journal of Cell Science, 2005, 118, 3277-3288.	2.0	14
34	Imaging protein behavior inside the living cell. Molecular and Cellular Endocrinology, 2005, 230, 1-6.	3.2	22
35	Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods, 2003, 29, 58-73.	3.8	213
36	A PIT-1 Homeodomain Mutant Blocks the Intranuclear Recruitment Of the CCAAT/Enhancer Binding Protein α Required for Prolactin Gene Transcription. Molecular Endocrinology, 2003, 17, 209-222.	3.7	50

RICHARD N DAY

#	Article	IF	CITATIONS
37	Fluorescence Resonance Energy Transfer Microscopy of Localized Protein Interactions in the Living Cell Nucleus. Methods, 2001, 25, 4-18.	3.8	230
38	Visualizing Protein-Protein Interactions in the Nucleus of the Living Cell. Molecular Endocrinology, 1999, 13, 517-526.	3.7	32
39	Spying on the hidden lives of proteins. Nature Biotechnology, 1999, 17, 425-426.	17.5	15
40	Shining a light on protein sociobiology. Nature Biotechnology, 1998, 16, 514-515.	17.5	0
41	Chapter 18: Visualizing Protein Interactions in Living Cells Using Digitized GFP Imaging and FRET Microscopy. Methods in Cell Biology, 1998, 58, 293-314.	1.1	105
42	Visualization of Pit-1 Transcription Factor Interactions in the Living Cell Nucleus by Fluorescence Resonance Energy Transfer Microscopy. Molecular Endocrinology, 1998, 12, 1410-1419.	3.7	118
43	Selective Inhibition of Prolactin Gene Transcription by the ETS-2 Repressor Factor. Journal of Biological Chemistry, 1998, 273, 31909-31915.	3.4	26
44	PIT-1 Protein Localization at Different Optical Sections in a Single Living Cell Using FRET Microscopy and Green Fluorescent Proteins. Microscopy and Microanalysis, 1997, 3, 133-134.	0.4	1
45	Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 1996, 173, 83-87.	2.2	108
46	Functional Interaction of the Estrogen Receptor with the Tissue-Specific, Homeodomain Transcription Factor, PIT-1. , 1994, , 131-161.		0
47	Pituitary Calcium Channel Modulation and Regulation of Prolactin Gene Expression. Molecular Endocrinology, 1990, 4, 736-742.	3.7	68
48	Both Pit-1 and the Estrogen Receptor Are Required for Estrogen Responsiveness of the Rat Prolactin Gene. Molecular Endocrinology, 1990, 4, 1964-1971.	3.7	198
49	Clustered Point Mutation Analysis of the Rat Prolactin Promoter. Molecular Endocrinology, 1990, 4, 1564-1571.	3.7	100
50	The Distal Enhancer Region of the Rat Prolactin Gene Contains Elements Conferring Response to Multiple Hormones. Molecular Endocrinology, 1989, 3, 3-9.	3.7	103