Bradley R Sturz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11583171/publications.pdf

Version: 2024-02-01

687363 839539 41 401 13 18 citations h-index g-index papers 41 41 41 259 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Savoring Interventions Increase Positive Emotions After a Social-Evaluative Hassle. Frontiers in Psychology, 2022, 13, 791040.	2.1	2
2	Geometric Encoding. , 2022, , 2934-2936.		0
3	Testing principal- versus medial-axis accounts of global spatial reorientation Journal of Experimental Psychology Animal Learning and Cognition, 2018, 44, 209-215.	0.5	2
4	Geometric Encoding. , 2017, , 1-3.		0
5	Stroop-like interference in a match-to-sample task: Further evidence for semantic competition?. Learning and Motivation, 2016, 56, 53-64.	1.2	3
6	Detecting the perception of illusory spatial boundaries: Evidence from distance judgments. Cognition, 2016, 146, 371-376.	2.2	4
7	Isolated processing of geometric shapes and their corresponding shape words: Evidence from a delayed match-to-sample task Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1088-1103.	0.9	1
8	Evidence consistent with the multiple-bearings hypothesis from human virtual landmark-based navigation. Frontiers in Psychology, 2015, 6, 488.	2.1	5
9	Asymmetrical Interference Effects between Two-Dimensional Geometric Shapes and Their Corresponding Shape Words. PLoS ONE, 2014, 9, e92740.	2.5	3
10	Modeling a role of field of view in the extraction of geometric cues during reorientation. Frontiers in Psychology, 2014, 5, 535.	2.1	3
11	A consistent but non-coincident visual pattern facilitates the learning of spatial relations among locations. Psychonomic Bulletin and Review, 2014, 21, 114-120.	2.8	1
12	Incidental encoding of enclosure geometry does not require visual input: evidence from blindfolded adults. Memory and Cognition, 2014, 42, 935-942.	1.6	11
13	Overtraining and the use of feature and geometric cues for reorientation. Psychological Research, 2013, 77, 176-182.	1.7	3
14	Geometric cues, reference frames, and the equivalence of experienced-aligned and novel-aligned views in human spatial memory. Cognition, 2013, 126, 459-474.	2.2	19
15	Environment size and the use of feature and geometric cues for reorientation. Acta Psychologica, 2013, 142, 251-258.	1.5	6
16	Beacons and surface features differentially influence human reliance on global and local geometric cues when reorienting in a virtual environment. Behavioural Processes, 2013, 93, 71-81.	1.1	2
17	Does constraining field of view prevent extraction of geometric cues for humans during virtual-environment reorientation?. Journal of Experimental Psychology, 2013, 39, 390-396.	1.7	14
18	Stroop interference in a delayed match-to-sample task: evidence for semantic competition. Frontiers in Psychology, 2013, 4, 842.	2.1	10

#	Article	IF	CITATIONS
19	More than a feeling: incidental learning of array geometry by blind-folded adult humans revealed through touch. Journal of Experimental Biology, 2012, 216, 587-93.	1.7	5
20	No evidence that consistent auditory cues facilitate learning of spatial relations among locations. Behavioural Processes, 2012, 90, 198-203.	1,1	5
21	On Discriminating between Geometric Strategies of Surface-Based Orientation. Frontiers in Psychology, 2012, 3, 112.	2.1	5
22	The roles of beaconing and dead reckoning in human virtual navigation. Learning and Motivation, 2012, 43, 14-23.	1.2	5
23	Enclosure size and the use of local and global geometric cues for reorientation. Psychonomic Bulletin and Review, 2012, 19, 270-276.	2.8	21
24	Is surface-based orientation influenced by a proportional relationship of shape parameters?. Psychonomic Bulletin and Review, 2011, 18, 848-854.	2.8	16
25	Neither by global nor local cues alone: evidence for a unified orientation process. Animal Cognition, 2011, 14, 665-674.	1.8	32
26	Of global space or perceived place? Comment on Kelly <i>et al</i> Biology Letters, 2011, 7, 647-648.	2.3	10
27	Orientation in trapezoid-shaped enclosures: Implications for theoretical accounts of geometry learning Journal of Experimental Psychology, 2011, 37, 246-253.	1.7	32
28	Solving for two unknowns: An extension of vector-based models of landmark-based navigation Journal of Experimental Psychology, 2011, 37, 368-374.	1.7	3
29	Testing the translational-symmetry hypothesis of abstract-concept learning in pigeons. Learning and Behavior, 2010, 38, 35-41.	1.0	3
30	Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations. Animal Cognition, 2010, 13, 341-349.	1.8	14
31	Encoding of variability of landmark-based spatial information. Psychological Research, 2010, 74, 560-567.	1.7	10
32	Reorienting when cues conflict: A role for information content in spatial learning?. Behavioural Processes, 2010, 83, 90-98.	1,1	14
33	Domain is a moving target for relational learning. Behavioural Processes, 2010, 83, 172-175.	1.1	8
34	Precedence of spatial pattern learning revealed by immediate reversal performance. Behavioural Processes, 2010, 85, 252-264.	1,1	2
35	Dissociation of Past and Present Experience in Problem Solving Using a Virtual Environment. Cyberpsychology, Behavior and Social Networking, 2009, 12, 15-19.	2.2	9
36	Evidence against integration of spatial maps in humans: generality across real and virtual environments. Animal Cognition, 2009, 12, 237-247.	1.8	22

#	Article	IF	CITATIONS
37	Facilitation of learning spatial relations among locations by visual cues: Implications for theoretical accounts of spatial learning. Psychonomic Bulletin and Review, 2009, 16, 306-312.	2.8	17
38	Encoding of relative enclosure size in a dynamic three-dimensional virtual environment by humans. Behavioural Processes, 2009, 82, 223-227.	1.1	17
39	Abstract-concept learning carryover effects from the initial training set in pigeons (Columba livia) Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 79-89.	0.5	18
40	Learning of absolute and relative distance and direction from discrete visual landmarks by pigeons (Columba livia) Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 90-113.	0.5	20
41	Evidence against integration of spatial maps in humans. Animal Cognition, 2006, 9, 207-217.	1.8	24