
Huan Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11582756/publications.pdf Version: 2024-02-01

HUANLUO

#	Article	IF	CITATIONS
1	Vehicle Detection in High-Resolution Aerial Images via Sparse Representation and Superpixels. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 103-116.	6.3	93
2	Bag-of-visual-phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113, 106-123.	11.1	80
3	3-D Road Boundary Extraction From Mobile Laser Scanning Data via Supervoxels and Graph Cuts. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 802-813.	8.0	71
4	Road Boundaries Detection Based on Local Normal Saliency From Mobile Laser Scanning Data. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 2085-2089.	3.1	58
5	Vehicle Detection in High-Resolution Aerial Images Based on Fast Sparse Representation Classification and Multiorder Feature. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 2296-2309.	8.0	55
6	Traffic Sign Occlusion Detection Using Mobile Laser Scanning Point Clouds. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 2364-2376.	8.0	47
7	Semantic Labeling of Mobile LiDAR Point Clouds via Active Learning and Higher Order MRF. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 3631-3644.	6.3	47
8	Object Detection in Terrestrial Laser Scanning Point Clouds Based on Hough Forest. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 1807-1811.	3.1	39
9	3-D Point Cloud Object Detection Based on Supervoxel Neighborhood With Hough Forest Framework. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1570-1581.	4.9	34
10	3-D Object Classification in Heterogeneous Point Clouds via Bag-of-Words and Joint Distribution Adaption. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1909-1913.	3.1	6
11	Three-Dimensional Object Co-Localization From Mobile LiDAR Point Clouds. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1996-2007.	8.0	3
12	Rapid traffic sign damage inspection in natural scenes using mobile laser scanning data. , 2017, , .		2
13	Exploiting location information to detect light pole in mobile LiDAR point clouds. , 2016, , .		1
14	A Deep Reinforcement Learning Framework for Vehicle Detection and Pose Estimation in 3D Point Clouds. Lecture Notes in Computer Science, 2020, , 405-416.	1.3	1
15	An intensity-enhanced method for handling mobile laser scanning point clouds. International Journal of Applied Farth Observation and Geoinformation, 2022, 107, 102684	2.8	1