Stephane Honore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11582615/publications.pdf

Version: 2024-02-01

279778 315719 6,444 38 23 38 citations h-index g-index papers 38 38 38 13220 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clinical efficacy and safety profile of hydroxychloroquine and azithromycin against COVID-19. International Journal of Antimicrobial Agents, 2021, 57, 106242.	2.5	3
2	Safety profile of hydroxychloroquine and azithromycin combined treatment in COVID-19 patients. International Journal of Antimicrobial Agents, 2021, 57, 106236.	2.5	1
3	Response to the use of hydroxychloroquine in combination with azithromycin for patients with COVID-19 is not supported by recent literature International Journal of Antimicrobial Agents, 2021, 57, 106241.	2.5	2
4	Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open label non-randomized clinical trial revisited. International Journal of Antimicrobial Agents, 2021, 57, 106243.	2.5	33
5	Low concentrations of vorinostat decrease EB1 expression in GBM cells and affect microtubule dynamics, cell survival and migration. Oncotarget, 2021, 12, 304-315.	1.8	2
6	Combination of Hydroxychloroquine Plus Azithromycin As Potential Treatment for COVID-19 Patients: Safety Profile, Drug Interactions, and Management of Toxicity. Microbial Drug Resistance, 2021, 27, 281-290.	2.0	16
7	Drug repurposing against SARS-CoV-1, SARS-CoV-2Âand MERS-CoV. Future Microbiology, 2021, 16, 1341-1370.	2.0	25
8	Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Medicine and Infectious Disease, 2020, 35, 101738.	3.0	372
9	Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis. Travel Medicine and Infectious Disease, 2020, 36, 101791.	3.0	209
10	Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Medicine and Infectious Disease, 2020, 34, 101663.	3.0	605
11	Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 2020, 56, 105949.	2.5	3,955
12	EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget, 2020, 11, 759-774.	1.8	11
13	Microtubules (MT) a key target in oncology: mathematical modeling of anti-MT agents on cell migration. Mathematical Modelling of Natural Phenomena, 2020, 15, 63.	2.4	1
14	Proscillaridin A exerts anti-tumor effects through GSK3 \hat{l}^2 activation and alteration of microtubule dynamics in glioblastoma. Cell Death and Disease, 2018, 9, 984.	6.3	28
15	Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cellular and Molecular Life Sciences, 2017, 74, 2381-2393.	5.4	85
16	Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability. Journal of Theoretical Biology, 2017, 429, 18-34.	1.7	11
17	Impact of a pharmacist-led medication review on hospital readmission in a pediatric and elderly population: study protocol for a randomized open-label controlled trial. Trials, 2017, 18, 65.	1.6	13
18	Do pharmacistâ€led medication reviews in hospitals help reduce hospital readmissions? A systematic review and metaâ€analysis. British Journal of Clinical Pharmacology, 2016, 82, 1660-1673.	2.4	87

#	Article	IF	CITATIONS
19	The Novel Tubulin-Binding Checkpoint Activator BAL101553 Inhibits EB1-Dependent Migration and Invasion and Promotes Differentiation of Glioblastoma Stem-like Cells. Molecular Cancer Therapeutics, 2016, 15, 2740-2749.	4.1	25
20	Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget, 2015, 6, 43557-43570.	1.8	19
21	PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvascular Research, 2014, 95, 149-156.	2.5	26
22	ROS-mediated EB1 phosphorylation through Akt/GSK3β pathway: implication in cancer cell response to microtubule-targeting agents. Oncotarget, 2014, 5, 3408-3423.	1.8	39
23	End-binding 1 protein overexpression correlates with glioblastoma progression and sensitizes to Vinca-alkaloids in vitro and in vivo. Oncotarget, 2014, 5, 12769-12787.	1.8	25
24	ATIP3, a Novel Prognostic Marker of Breast Cancer Patient Survival, Limits Cancer Cell Migration and Slows Metastatic Progression by Regulating Microtubule Dynamics. Cancer Research, 2013, 73, 2905-2915.	0.9	56
25	Partial depletion of gammaâ€actin suppresses microtubule dynamics. Cytoskeleton, 2013, 70, 148-160.	2.0	16
26	Anti-Migratory Effect of Vinflunine in Endothelial and Glioblastoma Cells Is Associated with Changes in EB1 C-Terminal Detyrosinated/Tyrosinated Status. PLoS ONE, 2013, 8, e65694.	2.5	28
27	Pharmacological Inhibition of LIM Kinase Stabilizes Microtubules and Inhibits Neoplastic Growth. Cancer Research, 2012, 72, 4429-4439.	0.9	67
28	Epothilone B inhibits migration of glioblastoma cells by inducing microtubule catastrophes and affecting EB1 accumulation at microtubule plus ends. Biochemical Pharmacology, 2012, 84, 432-443.	4.4	41
29	Investigating Microtubule Dynamic Instability Using Microtubule-Targeting Agents. Methods in Molecular Biology, 2011, 777, 245-260.	0.9	11
30	Abstract 1977: BAL27862: A unique microtubule-targeted drug that suppresses microtubule dynamics, severs microtubules, and overcomes Bcl-2- and tubulin subtype-related drug resistance. Cancer Research, 2010, 70, 1977-1977.	0.9	8
31	Antiangiogenic vinflunine affects EB1 localization and microtubule targeting to adhesion sites. Molecular Cancer Therapeutics, 2008, 7, 2080-2089.	4.1	42
32	Memo–RhoA–mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells. Journal of Cell Biology, 2008, 183, 401-408.	5.2	112
33	ADP ribosylation factor like 2 (Arl2) protein influences microtubule dynamics in breast cancer cells. Experimental Cell Research, 2007, 313, 473-485.	2.6	33
34	Microtubule-targeting agents in angiogenesis: Where do we stand?. Drug Resistance Updates, 2006, 9, 74-86.	14.4	77
35	Antiangiogenic Concentrations of Vinflunine Increase the Interphase Microtubule Dynamics and Decrease the Motility of Endothelial Cells. Cancer Research, 2006, 66, 3256-3263.	0.9	81
36	Antiangiogenic Concentrations of Paclitaxel Induce an Increase in Microtubule Dynamics in Endothelial Cells but Not in Cancer Cells. Cancer Research, 2005, 65, 2433-2440.	0.9	135

3

#	‡	Article	lF	CITATIONS
3	37	Synergistic Suppression of Microtubule Dynamics by Discodermolide and Paclitaxel in Non-Small Cell Lung Carcinoma Cells. Cancer Research, 2004, 64, 4957-4964.	0.9	95
3	38	Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Molecular Cancer Therapeutics, 2003, 2, 1303-11.	4.1	49