Patricia Siguier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11582489/publications.pdf

Version: 2024-02-01

		361045	5	80395
28	2,738	20		25
papers	citations	h-index		g-index
30	30	30		3606
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Response from Varani et al. to "Comment on â€~the IS6 family, a clinically important group of insertion sequences including IS26' by Ruth M. Hall― Mobile DNA, 2022, 13, 2.	1.3	O
2	DNA repair Nonhomologous Recombination: Bacterial Transposons. , 2021, , 303-312.		0
3	The IS6 family, a clinically important group of insertion sequences including IS26. Mobile DNA, 2021, 12, 11.	1.3	58
4	TnpAREP and REP sequences dissemination in bacterial genomes: REP recognition determinants. Nucleic Acids Research, 2021, 49, 6982-6995.	6.5	3
5	Intracellular Positioning Systems Limit the Entropic Eviction of Secondary Replicons Toward the Nucleoid Edges in Bacterial Cells. Journal of Molecular Biology, 2020, 432, 745-761.	2.0	21
6	Single-strand DNA processing: phylogenomics and sequence diversity of a superfamily of potential prokaryotic HuH endonucleases. BMC Genomics, 2018, 19, 475.	1.2	5
7	Known knowns, known unknowns and unknown unknowns in prokaryotic transposition. Current Opinion in Microbiology, 2017, 38, 171-180.	2.3	25
8	Everyman's Guide to Bacterial Insertion Sequences. Microbiology Spectrum, 2015, 3, MDNA3-0030-2014.	1.2	204
9	Insertion Sequence IS <i>26</i> Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition. MBio, 2015, 6, e00762.	1.8	256
10	A TALE of Transposition: Tn <i>3</i> -Like Transposons Play a Major Role in the Spread of Pathogenicity Determinants of Xanthomonas citri and Other Xanthomonads. MBio, 2015, 6, e02505-14.	1.8	43
11	The Diversity of Prokaryotic DDE Transposases of the Mutator Superfamily, Insertion Specificity, and Association with Conjugation Machineries. Genome Biology and Evolution, 2014, 6, 260-272.	1.1	51
12	Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiology Reviews, 2014, 38, 865-891.	3.9	487
13	<scp>IS<i>Dra</i></scp> <i>2</i> <transposition <scp="" in=""><i>Deinococcus radiodurans</i>is downregulated by <scp>TnpB</scp>. Molecular Microbiology, 2013, 88, 443-455.</transposition>	1.2	46
14	IS 200 /IS 605 family single-strand transposition: mechanism of IS 608 strand transfer. Nucleic Acids Research, 2013, 41, 3302-3313.	6.5	24
15	Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences â€. Nucleic Acids Research, 2012, 40, 3596-3609.	6.5	43
16	ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biology, 2011, 12, R30.	13.9	340
17	ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucleic Acids Research, 2010, 38, D62-D68.	6.5	45
18	The Arthrobacter arilaitensis Re117 Genome Sequence Reveals Its Genetic Adaptation to the Surface of Cheese. PLoS ONE, 2010, 5, e15489.	1.1	82

#	Article	IF	Citations
19	Structure, Function, and Evolution of the Thiomonas spp. Genome. PLoS Genetics, 2010, 6, e1000859.	1.5	123
20	The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications. PLoS ONE, 2010, 5, e11748.	1.1	177
21	Single-Stranded DNA Transposition Is Coupled to Host Replication. Cell, 2010, 142, 398-408.	13.5	70
22	Route 66: investigations into the organisation and distribution of the IS66 family of prokaryotic insertion sequences. Research in Microbiology, 2010, 161, 136-143.	1.0	18
23	The new IS1595 family, its relation to IS1 and the frontier between insertion sequences and transposons. Research in Microbiology, 2009, 160, 232-241.	1.0	47
24	IS4 family goes genomic. BMC Evolutionary Biology, 2008, 8, 18.	3.2	58
25	A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments. PLoS Genetics, 2007, 3, e53.	1.5	166
26	I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends in Genetics, 2007, 23, 10-15.	2.9	132
27	Insertion sequences in prokaryotic genomes. Current Opinion in Microbiology, 2006, 9, 526-531.	2.3	202
28	Everyman's Guide to Bacterial Insertion Sequences. , 0, , 555-590.		12