Min-Quan Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1158201/min-quan-yang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,282 65 59 39 h-index g-index citations papers 6.64 65 9,195 9.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
59	Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. <i>Nanoscale</i> , 2013 , 5, 3601-14	7.7	1426
58	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. <i>Chemical Reviews</i> , 2015 , 115, 10307-77	68.1	903
57	Artificial photosynthesis over graphene-semiconductor composites. Are we getting better?. <i>Chemical Society Reviews</i> , 2014 , 43, 8240-54	58.5	477
56	Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. <i>ACS Nano</i> , 2014 , 8, 623-33	16.7	336
55	Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16891-903	3.6	334
54	Synthesis of fullerene-, carbon nanotube-, and graphene-TiOIhanocomposite photocatalysts for selective oxidation: a comparative study. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1156-64	9.5	307
53	Constructing Ternary CdStaraphenetio2 Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18023-18031	3.8	281
52	Selective photoredox using graphene-based composite photocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 19102-18	3.6	273
51	Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. <i>Nature Communications</i> , 2017 , 8, 14224	17.4	243
50	Insight into the Effect of Highly Dispersed MoS2 versus Layer-Structured MoS2 on the Photocorrosion and Photoactivity of CdS in Graphene IdS MoS2 Composites. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 27234-27246	3.8	210
49	Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS </i>	9.5	209
48	Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. <i>International Reviews in Physical Chemistry</i> , 2016 , 35, 1-36	7	201
47	CdSgraphene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation. <i>Journal of Catalysis</i> , 2013 , 303, 60-6	69 ^{7.3}	190
46	Noble Metal-Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. <i>Small</i> , 2018 , 14, e1703323	11	187
45	Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9380	13	183
44	Visible-to-NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar-Powered Environmental Purification and Fuel Production. <i>Advanced Materials</i> , 2018 , 30, e1802894	24	158
43	A critical and benchmark comparison on graphene-, carbon nanotube-, and fullerene-semiconductor nanocomposites as visible light photocatalysts for selective oxidation. <i>Journal of Catalysis</i> , 2013 , 299, 210-221	7.3	154

(2015-2016)

42	Photocatalytic conversion of CO over graphene-based composites: current status and future perspective. <i>Nanoscale Horizons</i> , 2016 , 1, 185-200	10.8	153
41	A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm, 2013, 15, 6819	3.3	148
40	Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach. <i>Langmuir</i> , 2013 , 29, 10549-58	4	136
39	Basic Principles for Observing the Photosensitizer Role of Graphene in the GrapheneBemiconductor Composite Photocatalyst from a Case Study on GrapheneInO. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21724-21734	3.8	128
38	Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity. <i>Nanoscale</i> , 2014 , 6, 6335-45	7.7	127
37	Enhancing the visible light photocatalytic performance of ternary CdS(graphene P d) nanocomposites via a facile interfacial mediator and co-catalyst strategy. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19156-19166	13	118
36	Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxidea unique 2D macromolecular surfactant. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5589-99	3.6	111
35	Surface charge promotes the synthesis of large, flat structured graphene (CdS nanowire) IIiO2 nanocomposites as versatile visible light photocatalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 430-4	4 4 ð	106
34	Visible-light-driven oxidation of primary C-H bonds over CdS with dual co-catalysts graphene and TiO2. <i>Scientific Reports</i> , 2013 , 3, 3314	4.9	106
33	Rational design of few-layer MoSe confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. <i>Nanoscale</i> , 2019 , 11, 6766-6775	7.7	92
32	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. <i>Materials Horizons</i> , 2017 , 4, 885-894	14.4	90
31	A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. <i>Nanoscale</i> , 2014 , 6, 7193-8	7.7	89
30	Synthesis of In2S3IInT nanocomposites for selective reduction under visible light. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1710-1720	13	87
29	A low-temperature and one-step method for fabricating ZnIn2S4thR nanocomposites with enhanced visible light photoactivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14401	13	79
28	Spectrum Tailored Defective 2D Semiconductor Nanosheets Aerogel for Full-Spectrum-Driven Photothermal Water Evaporation and Photochemical Degradation. <i>Advanced Functional Materials</i> , 2020 , 30, 2004460	15.6	78
27	Metal-free, robust, and regenerable 3D grapheneBrganics aerogel with high and stable photosensitization efficiency. <i>Journal of Catalysis</i> , 2017 , 346, 21-29	7.3	76
26	Commercialization of graphene-based technologies: a critical insight. <i>Chemical Communications</i> , 2015 , 51, 7090-5	5.8	63
25	Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites. <i>Nanoscale</i> , 2015 , 7, 18062-70	7.7	63

24	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250-2500 nm) Harvesting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3077-3081	16.4	61
23	An Sn doped 1T-2H MoS few-layer structure embedded in N/P co-doped bio-carbon for high performance sodium-ion batteries. <i>Chemical Communications</i> , 2019 , 55, 3614-3617	5.8	50
22	Noncovalently Functionalized Graphene-Directed Synthesis of Ultralarge Graphene-Based TiO2 Nanosheet Composites: Tunable Morphology and Photocatalytic Applications. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 27325-27335	3.8	49
21	In situ fabrication of ultrathin few-layered WSe anchored on N, P dual-doped carbon by bioreactor for half/full sodium/potassium-ion batteries with ultralong cycling lifespan. <i>Journal of Colloid and Interface Science</i> , 2020 , 574, 217-228	9.3	42
20	Progress on Graphene-Based Composite Photocatalysts for Selective Organic Synthesis. <i>Current Organic Chemistry</i> , 2013 , 17, 2503-2515	1.7	27
19	Nanocomposites of graphene-CdS as photoactive and reusable catalysts for visible-light-induced selective reduction process. <i>Journal of Energy Chemistry</i> , 2014 , 23, 145-155	12	21
18	Facet Engineering of Pd Nanocrystals for Enhancing Photocatalytic Hydrogenation: Modulation of the Schottky Barrier Height and Enrichment of Surface Reactants. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 13044-13054	9.5	21
17	A hybrid of MIL-53(Fe) and conductive sulfide as a synergistic electrocatalyst for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14574-14582	13	16
16	Highly stable Pd/HNbO-based flexible humidity sensor for perdurable wireless wearable applications. <i>Nanoscale Horizons</i> , 2021 , 6, 260-270	10.8	13
15	Recent Advancements in Photocatalytic Valorization of Plastic Waste to Chemicals and Fuels. <i>Frontiers in Nanotechnology</i> , 2021 , 3,	5.5	9
14	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250\(\textbf{2}500 \) nm) Harvesting. <i>Angewandte Chemie</i> , 2019 , 131, 3109-3113	3.6	8
13	Mesoporous CoWO4 nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. <i>Materials Today Energy</i> , 2022 , 100943	7	6
12	Alkaline Co(OH)-Decorated 2D Monolayer Titanic Acid Nanosheets for Enhanced Photocatalytic Syngas Production from CO. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 38239-38247	9.5	6
11	A Novel Photosensitizer ZnlnS Mediated Photodynamic Therapy Induced-HepG2 Cell Apoptosis. <i>Radiation Research</i> , 2019 , 192, 422-430	3.1	4
10	Solar-Energy Capture: Visible-to-NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar-Powered Environmental Purification and Fuel Production (Adv. Mater. 47/2018). <i>Advanced Materials</i> , 2018 , 30, 1870363	24	4
9	Recent advances in ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformations. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 5400-5424	7.1	4
8	Photothermal Suzuki Coupling Over a Metal Halide Perovskite/Pd Nanocube Composite Catalyst <i>ACS Applied Materials & District Action (Composite Catalyst)</i>	9.5	4
7	Photocatalytic Anaerobic Oxidation of Aromatic Alcohols Coupled With H Production Over CsPbBr/GO-Pt Catalysts <i>Frontiers in Chemistry</i> , 2022 , 10, 833784	5	3

LIST OF PUBLICATIONS

6	Amorphous nickel borate as a high-efficiency cocatalyst for H2 generation and fine chemical synthesis. <i>Catalysis Communications</i> , 2022 , 162, 106389	3.2	2
5	Construction of TiO-Eggshell for Efficient Degradation of Tetracycline Hydrochloride: Sunlight Induced In-Situ Formation of Carbonate Radical. <i>Materials</i> , 2021 , 14,	3.5	2
4	Insight into the Real Efficacy of Graphene for Enhancing Photocatalytic Efficiency: A Case Study on CVD Graphene-TiO2 Composites. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8755-8764	6.1	2
3	Construction of Chemically Bonded Interface of Organic/Inorganic g-CN/LDH Heterojunction for Z-Schematic Photocatalytic H Generation. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
2	Titelbild: Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250\(^1\)500 nm) Harvesting (Angew. Chem. 10/2019). <i>Angewandte Chemie</i> , 2019 , 131, 2933-2933	3.6	
1	The Applications of Graphene-based Nanocomposites in the Field of Photocatalytic Selective Organic Transformations. <i>World Scientific Series in Nanoscience and Nanotechnology</i> , 2016 , 81-115	0.1	