Paul N Duchesne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11581221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New black indium oxide—tandem photothermal CO2-H2 methanol selective catalyst. Nature Communications, 2022, 13, 1512.	12.8	47
2	The next big thing for silicon nanostructures – CO ₂ photocatalysis. Faraday Discussions, 2020, 222, 424-432.	3.2	13
3	High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, 11, 5149.	12.8	82
4	Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nature Communications, 2020, 11, 6095.	12.8	129
5	High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catalysis, 2020, 10, 13668-13681.	11.2	55
6	Flash Solid–Solid Synthesis of Silicon Oxide Nanorods. Small, 2020, 16, 2001435.	10.0	2
7	Black indium oxide a photothermal CO2 hydrogenation catalyst. Nature Communications, 2020, 11, 2432.	12.8	192
8	Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10, 3169.	12.8	304
9	Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.	34.4	234
10	Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nature Communications, 2019, 10, 2608.	12.8	104
11	Towards Solar Methanol: Past, Present, and Future. Advanced Science, 2019, 6, 1801903.	11.2	63
12	Principles of photothermal gas-phase heterogeneous CO ₂ catalysis. Energy and Environmental Science, 2019, 12, 1122-1142.	30.8	300
13	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	13.7	312
14	Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^'} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ . Advanced Science, 2018, 5, 1700732.	11.2	91
15	Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?. Applied Catalysis B: Environmental, 2018, 221, 77-85.	20.2	59
16	Golden single-atomic-site platinum electrocatalysts. Nature Materials, 2018, 17, 1033-1039.	27.5	266
17	Solar Fuels: Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^'} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ (Adv. Sci. 6/2018). Advanced Science. 2018. 5. 1870034.	11.2	3
18	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	9.1	136

PAUL N DUCHESNE

#	ARTICLE	IF	CITATIONS
19	Promoting Effect of Ni(OH) ₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 2017, 29, 1703057.	21.0	251
20	Amorphous MoS ₃ Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodiumâ€Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy Materials, 2017, 7, 1601602.	19.5	164
21	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie - International Edition, 2016, 55, 8894-8898.	13.8	126
22	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	12.8	334
23	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie, 2016, 128, 9040-9044.	2.0	31
24	A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances, 2015, 1, e1500462.	10.3	719
25	Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chemistry of Materials, 2015, 27, 5736-5744.	6.7	32
26	The surface structure of silver-coated gold nanocrystals and its influence on shape control. Nature Communications, 2015, 6, 7664.	12.8	53
27	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	12.8	466
28	Self-Assembly and Chemical Reactivity of Alkenes on Platinum Nanoparticles. Langmuir, 2015, 31, 522-528.	3.5	11
29	Surface Reconstruction and Reactivity of Platinum–Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28861-28867.	3.1	5
30	Element-Specific Analysis of the Growth Mechanism, Local Structure, and Electronic Properties of Pt Clusters Formed on Ag Nanoparticle Surfaces. Journal of Physical Chemistry C, 2014, 118, 21714-21721.	3.1	12
31	Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation. Science, 2014, 344, 495-499.	12.6	591
32	Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe ₂ O ₃ Catalysts. Journal of Physical Chemistry C, 2013, 117, 21254-21262.	3.1	67
33	In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2013, 117, 11498-11505.	3.1	51
34	Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum–Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 26324-26333.	3.1	40
35	Local structure of fluorescent platinum nanoclusters. Nanoscale, 2012, 4, 4199.	5.6	40