Stefan Wyder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11581089/publications.pdf

Version: 2024-02-01

623188 996533 29,926 15 14 15 citations g-index h-index papers 15 15 15 52792 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47, D607-D613.	6.5	12,237
2	The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 2017, 45, D362-D368.	6.5	6,303
3	STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 2015, 43, D447-D452.	6.5	9,029
4	The FgfrL1 receptor is required for development of slow muscle fibers. Developmental Biology, 2014, 394, 228-241.	0.9	25
5	Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling. PLoS ONE, 2012, 7, e33457.	1.1	16
6	Functional Characterization of Transcription Factor Motifs Using Cross-species Comparison across Large Evolutionary Distances. PLoS Computational Biology, 2010, 6, e1000652.	1.5	28
7	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	6.0	808
8	Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates. BMC Genomics, 2009, 10, 17.	1.2	8
9	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	13.7	1,255
10	Quantification of ortholog losses in insects and vertebrates. Genome Biology, 2007, 8, R242.	13.9	66
11	Cloning, characterization and analysis by RNA interference of various genes of the Chelonus inanitus polydnavirus. Journal of General Virology, 2005, 86, 973-983.	1.3	14
12	Stage-dependent expression of Chelonus inanitus polydnavirus genes in the host and the parasitoid. Journal of Insect Physiology, 2004, 50, 1015-1026.	0.9	15
13	Fate of polydnavirus DNA of the egg–larval parasitoid Chelonus inanitus in the host Spodoptera littoralis. Journal of Insect Physiology, 2003, 49, 491-500.	0.9	36
14	Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. I. Ovary morphogenesis, amplification of viral DNA and ecdysteroid titres. Journal of General Virology, 2003, 84, 1141-1150.	1.3	39
15	Characterization of Chelonus inanitus polydnavirus segments: sequences and analysis, excision site and demonstration of clustering. Journal of General Virology, 2002, 83, 247-256.	1.3	47